首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2D Molybdenum disulfide (MoS2) is a promising candidate material for high‐speed and flexible optoelectronic devices, but only with low photoresponsivity. Here, a large enhancement of photocurrent response is obtained by coupling few‐layer MoS2 with Au plasmonic nanostructure arrays. Au nanoparticles or nanoplates placed onto few‐layer MoS2 surface can enhance the local optical field in the MoS2 layer, due to the localized surface plasmon (LSP) resonance. After depositing 4 nm thick Au nanoparticles sparsely onto few‐layer MoS2 phototransistors, a doubled increase in the photocurrent response is observed. The photocurrent of few‐layer MoS2 phototransistors exhibits a threefold enhancement with periodic Au nanoarrays. The simulated optical field distribution confirms that light can be trapped and enhanced near the Au nanoplates. These findings offer an avenue for practical applications of high performance MoS2‐based optoelectronic devices or systems in the future.  相似文献   

2.
Hydrogen production from water splitting through an efficient photoelectrochemical route requires photoinduced electron transfer from light harvesters to efficient electrocatalysts. Here, the plasmon‐enhanced photoelectrical nanocatalysts (NCs) have been successfully developed by coating a monolayer MoS2 on the Cu1.75S‐Au hetero‐nanoparticle for hydrogen evolution reaction (HER). The plasmonic NCs dramatically improve the HER, leading to 29.5‐fold increase of current under 650 nm excitation (1.0 W cm?2). These NCs generate an exceptionally high current density of 200 mA cm?2 at overpotential of 182.8 mV with a Tafel slope of 39 mV per decade and excellent stability, which is better than or comparable to the Pt‐free catalysts with carbon rod as counter electrode. The enhanced HER performance can be attributed to the significantly improved broad light absorption (400–3000 nm), more efficient charge separation and abundant active edge sites of monolayer MoS2. The studies may provide a facile strategy for the fabrication of efficient plasmon‐enhanced photoelectrical NCs for HER.  相似文献   

3.
In recent past, for next‐generation device opportunities such as sub‐10 nm channel field‐effect transistors (FETs), tunneling FETs, and high‐end display backplanes, tremendous research on multilayered molybdenum disulfide (MoS2) among transition metal dichalcogenides has been actively performed. However, nonavailability on a matured threshold voltage control scheme, like a substitutional doping in Si technology, has been plagued for the prosperity of 2D materials in electronics. Herein, an adjustment scheme for threshold voltage of MoS2 FETs by using self‐assembled monolayer treatment via octadecyltrichlorosilane is proposed and demonstrated to show MoS2 FETs in an enhancement mode with preservation of electrical parameters such as field‐effect mobility, subthreshold swing, and current on–off ratio. Furthermore, the mechanisms for threshold voltage adjustment are systematically studied by using atomic force microscopy, Raman, temperature‐dependent electrical characterization, etc. For validation of effects of threshold voltage engineering on MoS2 FETs, full swing inverters, comprising enhancement mode drivers and depletion mode loads are perfectly demonstrated with a maximum gain of 18.2 and a noise margin of ≈45% of 1/2 VDD. More impressively, quantum dot light‐emitting diodes, driven by enhancement mode MoS2 FETs, stably demonstrate 120 cd m?2 at the gate‐to‐source voltage of 5 V, exhibiting promising opportunities for future display application.  相似文献   

4.
Transition metal dichalcogenides with intrinsic spin–valley degrees of freedom hold great potentials for applications in spintronic and valleytronic devices. MoS2 monolayer possesses two inequivalent valleys in the Brillouin zone, with each valley coupling selectively with circularly polarized photons. The degree of valley polarization (DVP) is a parameter to characterize the purity of valley‐polarized photoluminescence (PL) of MoS2 monolayer. Usually, the detected values of DVP in MoS2 monolayer show achiral property under optical excitation of opposite helicities due to reciprocal phonon‐assisted intervalley scattering process. Here, it is reported that valley‐polarized PL of MoS2 can be tailored through near‐field interaction with plasmonic chiral metasurface. The resonant field of the chiral metasurface couples with valley‐polarized excitons, and tailors the measured PL spectra in the far‐field, resulting in observation of chiral DVP of MoS2‐metasurface under opposite helicities excitations. Valley‐contrast PL in the chiral heterostructure is also observed when illuminated by linearly polarized light. The manipulation of valley‐polarized PL in 2D materials using chiral metasurface represents a viable route toward valley‐polaritonic devices.  相似文献   

5.
A generalized scheme for the fabrication of high performance photodetectors consisting of a p‐type channel material and n‐type nanoparticles is proposed. The high performance of the proposed hybrid photodetector is achieved through enhanced photoabsorption and the photocurrent gain arising from its effective charge transfer mechanism. In this paper, the realization of this design is presented in a hybrid photodetector consisting of 2D p‐type black phosphorus (BP) and n‐type molybdenum disulfide nanoparticles (MoS2 NPs), and it is demonstrated that it exhibits enhanced photoresponsivity and detectivity compared to pristine BP photodetectors. It is found that the performance of hybrid photodetector depends on the density of NPs on BP layer and that the response time can be reduced with increasing density of MoS2 NPs. The rising and falling times of this photodetector are smaller than those of BP photodetectors without NPs. This proposed scheme is expected to work equally well for a photodetector with an n‐type channel material and p‐type nanoparticles.  相似文献   

6.
Molybdenum disulfide (MoS2), a typical 2D metal dichalcogenide (2DMD), has exhibited tremendous potential in optoelectronic device applications, especially in photodetection. However, due to the weak light absorption of planar mono‐/multilayers, limited cutoff wavelength edge, and lack of high‐quality junctions, most reported MoS2‐based photodetectors show undesirable performance. Here, a structurized 3D heterojunction of RGO–MoS2/pyramid Si is demonstrated via a simple solution‐processing method. Owing to the improved light absorption by the pyramid structure, the narrowed bandgap of the MoS2 by the imperfect crystallinity, and the enhanced charge separation/transportation by the inserted reduced graphene oxide (RGO), the assembled photodetector exhibits excellent performance in terms of a large responsivity of 21.8 A W?1, extremely high detectivity up to 3.8 × 1015 Jones (Jones = cm Hz1/2 W?1) and ultrabroad spectrum response ranging from 350 nm (ultraviolet) to 4.3 µm (midwave infrared). These device parameters represent the best results for MoS2‐based self‐driven photodetectors, and the detectivity value sets a new record for the 2DMD‐based photodetectors reported thus far. Prospectively, the design of novel 3D heterojunction can be extended to other 2DMDs, opening up the opportunities for a host of high‐performance optoelectronic devices.  相似文献   

7.
c2D transition metal dichalcogenides (TMDCs)‐based heterostructures have been demonstrated to achieve superior light absorption and photovoltaic effects theoretically and experimentally, making them extremely attractive for realizing optoelectronic devices. In this work, a vertical multilayered n‐MoS2/n‐silicon homotype heterojunction is fabricated, which takes advantage of multilayered MoS2 grown in situ directly on plane silicon. Electrical characterization reveals that the resultant device exhibits high sensitivity to visible–near‐infrared light with responsivity up to 11.9 A W–1. Notably, the photodetector shows high‐speed response time of ≈30.5 µs/71.6 µs and capability to work under higher pulsed light irradiation approaching 100 kHz. The high response speed could be attributed to a good quality of the multilayer MoS2, as well as in situ device fabrication process. These findings suggest that the multilayered MoS2/Si homotype heterojunction have great potential application in the field of visible–near‐infrared detection and might be used as elements for construction of high‐speed integrated optoelectronic sensor circuitry.  相似文献   

8.
MoS2 quantum dots (QDs)‐based white‐light‐emitting diodes (QD‐WLEDs) are designed, fabricated, and demonstrated. The highly luminescent, histidine‐doped MoS2 QDs synthesized by microwave induced fragmentation of 2D MoS2 nanoflakes possess a wide distribution of available electronic states as inferred from the pronounced excitation‐wavelength‐dependent emission properties. Notably, the histidine‐doped MoS2 QDs show a very strong emission intensity, which exceeds seven times of magnitude larger than that of pristine MoS2 QDs. The strongly enhanced emission is mainly attributed to nitrogen acceptor bound excitons and passivation of defects by histidine‐doping, which can enhance the radiative recombination drastically. The enabled electroluminescence (EL) spectra of the QD‐WLEDs with the main peak around 500 nm are found to be consistent with the photoluminescence spectra of the histidine‐doped MoS2 QDs. The enhanced intensity of EL spectra with the current increase shows the stability of histidine‐doped MoS2 based QD‐WLEDs. The typical EL spectrum of the novel QD‐WLEDs has a Commission Internationale de l'Eclairage chromaticity coordinate of (0.30, 0.36) exhibiting an intrinsic broadband white‐light emission. The unprecedented and low‐toxicity QD‐WLEDs based on a single light‐emitting material can serve as an excellent alternative for using transition metal dichalcogenides QDs as next generation optoelectronic devices.  相似文献   

9.
Thanks to their unique optical and electric properties, 2D materials have attracted a lot of interest for optoelectronic applications. Here, the emerging 2D materials, organic–inorganic hybrid perovskites with van der Waals interlayer interaction (Ruddlesden–Popper perovskites), are synthesized and characterized. Photodetectors based on the few‐layer Ruddlesden–Popper perovskite show good photoresponsivity as well as good detectivity. In order to further improve the photoresponse performance, 2D MoS2 is chosen to construct the perovskite–MoS2 heterojunction. The performance of the hybrid photodetector is largely improved with 6 and 2 orders of magnitude enhancement for photoresponsivity (104 A W?1) and detectivity (4 × 1010 Jones), respectively, which demonstrates the facile charge separation at the interface between perovskite and MoS2. Furthermore, the contribution of back gate tuning is proved with a greatly reduced dark current. The results demonstrated here will open up a new field for the investigation of 2D perovskites for optoelectronic applications.  相似文献   

10.
The development of transition metal dichalcogenides has greatly accelerated research in the 2D realm, especially for layered MoS2. Crucially, the metallic MoS2 monolayer is an ideal platform in which novel topological electronic states can emerge and also exhibits excellent energy conversion and storage properties. However, as its intrinsic metallic phase, little is known about the nature of 2D 1T′‐MoS2, probably because of limited phase uniformity (<80%) and lateral size (usually <1 µm) in produced materials. Herein, solution processing to realize high phase‐purity 1T′‐MoS2 monolayers with large lateral size is demonstrated. Direct chemical exfoliation of millimeter‐sized 1T′ crystal is introduced to successfully produce a high‐yield of 1T′‐MoS2 monolayers with over 97% phase purity and unprecedentedly large size up to tens of micrometers. Furthermore, the large‐sized and high‐quality 1T′‐MoS2 nanosheets exhibit clear intrinsic superconductivity among all thicknesses down to monolayer, accompanied by a slow drop of transition temperature from 6.1 to 3.0 K. Prominently, unconventional superconducting behavior with upper critical field far beyond the Pauli limit is observed in the centrosymmetric 1T′‐MoS2 structure. The results open up an ideal approach to explore the properties of 2D metastable polymorphic materials.  相似文献   

11.
2D transition metal dichalcogenides have attracted much attention in the field of spintronics due to their rich spin‐dependent properties. The promise of highly compact and low‐energy‐consumption spin‐orbit torque (SOT) devices motivates the search for structures and materials that can satisfy the requirements of giant perpendicular magnetic anisotropy (PMA) and large SOT simultaneously in SOT‐based magnetic memory. Here, it is demonstrated that PMA and SOT in a heavy metal/transition metal ferromagnet structure, Pt/[Co/Ni]2, can be greatly enhanced by introducing a molybdenum disulfide (MoS2) underlayer. According to first‐principles calculation and X‐ray absorption spectroscopy (XAS), the enhancement of the PMA is ascribed to the modification of the orbital hybridization at the interface of Pt/Co due to MoS2. The enhancement of SOT by the role played by MoS2 is explained, which is strongly supported by the identical behavior of SOT and PMA as a function of Pt thickness. This work provides new possibilities to integrate 2D materials into promising spintronics devices.  相似文献   

12.
Improved performance in plasmonic organic solar cells (OSCs) and organic light‐emitting diodes (OLEDs) via strong plasmon‐coupling effects generated by aligned silver nanowire (AgNW) transparent electrodes decorated with core–shell silver–silica nanoparticles (Ag@SiO2NPs) is demonstrated. NP‐enhanced plasmonic AgNW (Ag@SiO2NP–AgNW) electrodes enable substantially enhanced radiative emission and light absorption efficiency due to strong hybridized plasmon coupling between localized surface plasmons (LSPs) and propagating surface plasmon polaritons (SPPs) modes, which leads to improved device performance in organic optoelectronic devices (OODs). The discrete dipole approximation (DDA) calculation of the electric field verifies a strongly enhanced plasmon‐coupling effect caused by decorating core–shell Ag@SiO2NPs onto the AgNWs. Notably, an electroluminescence efficiency of 25.33 cd A?1 (at 3.2 V) and a power efficiency of 25.14 lm W?1 (3.0 V) in OLEDs, as well as a power conversion efficiency (PCE) value of 9.19% in OSCs are achieved using hybrid Ag@SiO2NP–AgNW films. These are the highest values reported to date for optoelectronic devices based on AgNW electrodes. This work provides a new design platform to fabricate high‐performance OODs, which can be further explored in various plasmonic and optoelectronic devices.  相似文献   

13.
1T‐phase molybdenum disulfide (1T‐MoS2) exhibits superior hydrogen evolution reaction (HER) over 2H‐phase MoS2 (2H‐MoS2). However, its thermodynamic instability is the main drawback impeding its practical application. In this work, a stable 1T‐MoS2 monolayer formed at edge‐aligned 2H‐MoS2 and a reduced graphene oxide heterointerface (EA‐2H/1T/RGO) using a precursor‐in‐solvent synthesis strategy are reported. Theoretical prediction indicates that the edge‐aligned layer stacking can induce heterointerfacial charge transfer, which results in a phase transition of the interfacial monolayer from 2H to 1T that realizes thermodynamic stability based on the adhesion energy between MoS2 and graphene. As an electrocatalyst for HER, EA‐2H/1T/RGO displays an onset potential of ?103 mV versus RHE, a Tafel slope of 46 mV dec?1 and 10 h stability in acidic electrolyte. The unexpected activity of EA‐2H/1T/RGO beyond 1T‐MoS2 is due to an inherent defect caused by the gliding of S atoms during the phase transition from 2H to 1T, leading the Gibbs free energy of hydrogen adsorption (ΔGH*) to decrease from 0.13 to 0.07 eV, which is closest to the ideal value (0.06 eV) of 2H‐MoS2. The presented work provides fundamental insights into the impressive electrochemical properties of HER and opens new avenues for phase transitions at 2D/2D hybrid interfaces.  相似文献   

14.
2D semiconductors are promising channel materials for field‐effect transistors (FETs) with potentially strong immunity to short‐channel effects (SCEs). In this paper, a grain boundary widening technique is developed to fabricate graphene electrodes for contacting monolayer MoS2. FETs with channel lengths scaling down to ≈4 nm can be realized reliably. These graphene‐contacted ultrashort channel MoS2 FETs exhibit superior performances including the nearly Ohmic contacts and excellent immunity to SCEs. This work provides a facile route toward the fabrication of various 2D material‐based devices for ultrascaled electronics.  相似文献   

15.
Irradiation of 2D sheets of transition metal dichalcogenides with ion beams has emerged as an effective approach to engineer chemically active defects in 2D materials. In this context, argon‐ion bombardment has been utilized to introduce sulfur vacancies in monolayer molybdenum disulfide (MoS2). However, a detailed understanding of the effects of generated defects on the functional properties of 2D MoS2 is still lacking. In this work, the correlation between critical electronic device parameters and the density of sulfur vacancies is systematically investigated through the fabrication and characterization of back‐gated monolayer MoS2 field‐effect transistors (FETs) exposed to a variable fluence of low‐energy argon ions. The electrical properties of pristine and ion‐irradiated FETs can be largely improved/recovered by exposing the devices to vapors of short linear thiolated molecules. Such a solvent‐free chemical treatment—carried out strictly under inert atmosphere—rules out secondary healing effects induced by oxygen or oxygen‐containing molecules. The results provide a guideline to design monolayer MoS2 optoelectronic devices with a controlled density of sulfur vacancies, which can be further exploited to introduce ad hoc molecular functionalities by means of thiol chemistry approaches.  相似文献   

16.
Layered van der Waals heterostructures have attracted considerable attention recently, due to their unique properties both inherited from individual two‐dimensional (2D) components and imparted from their interactions. Here, a novel few‐layer MoS2/glassy‐graphene heterostructure, synthesized by a layer‐by‐layer transfer technique, and its application as transparent photodetectors are reported for the first time. Instead of a traditional Schottky junction, coherent ohmic contact is formed at the interface between the MoS2 and the glassy‐graphene nanosheets. The device exhibits pronounced wavelength selectivity as illuminated by monochromatic lights. A responsivity of 12.3 mA W?1 and detectivity of 1.8 × 1010 Jones are obtained from the photodetector under 532 nm light illumination. Density functional theory calculations reveal the impact of specific carbon atomic arrangement in the glassy‐graphene on the electronic band structure. It is demonstrated that the band alignment of the layered heterostructures can be manipulated by lattice engineering of 2D nanosheets to enhance optoelectronic performance.  相似文献   

17.
All‐inorganic perovskites have high carrier mobility, long carrier diffusion length, excellent visible light absorption, and well overlapping with localized surface plasmon resonance (LSPR) of noble metal nanocrystals (NCs). The high‐performance photodetectors can be constructed by means of the intrinsic outstanding photoelectric properties, especially plasma coupling. Here, for the first time, inorganic perovskite photodetectors are demonstrated with synergetic effect of preferred‐orientation film and plasmonic with both high performance and solution process virtues, evidenced by 238% plasmonic enhancement factor and 106 on/off ratio. The CsPbBr3 and Au NC inks are assembled into high‐quality films by centrifugal‐casting and spin‐coating, respectively, which lead to the low cost and solution‐processed photodetectors. The remarkable near‐field enhancement effect induced by the coupling between Au LSPR and CsPbBr3 photogenerated carriers is revealed by finite‐difference time‐domain simulations. The photodetector exhibits a light on/off ratio of more than 106 under 532 nm laser illumination of 4.65 mW cm?2. The photocurrent increases from 0.67 to 2.77 μA with centrifugal‐casting. Moreover, the photocurrent rises from 245.6 to 831.1 μA with Au NCs plasma enhancement, leading to an enhancement factor of 238%, which is the most optimal report among the LSPR‐enhanced photodetectors, to the best of our knowledge. The results of this study suggest that all‐inorganic perovskites are promising semiconductors for high‐performance solution‐processed photodetectors, which can be further enhanced by Au plasmonic effect, and hence have huge potentials in optical communication, safety monitoring, and biological sensing.  相似文献   

18.
The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p‐n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high‐efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy‐free 2D monolayer WSe2‐MoS2 lateral p‐n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode‐spacing design can lead to environment‐independent PV properties. These robust PV properties deriving from the atomically sharp lateral p‐n interface can help develop the next‐generation photovoltaics.  相似文献   

19.
We report a robust method for engineering the optoelectronic properties of many‐layer MoS2 using low‐energy oxygen plasma treatment. Gas phase treatment of MoS2 with oxygen radicals generated in an upstream N2–O2 plasma is shown to enhance the photoluminescence (PL) of many‐layer, mechanically exfoliated MoS2 flakes by up to 20 times, without reducing the layer thickness of the material. A blueshift in the PL spectra and narrowing of linewidth are consistent with a transition of MoS2 from indirect to direct bandgap material. Atomic force microscopy and Raman spectra reveal that the flake thickness actually increases as a result of the plasma treatment, indicating an increase in the interlayer separation in MoS2. Ab initio calculations reveal that the increased interlayer separation is sufficient to decouple the electronic states in individual layers, leading to a transition from an indirect to direct gap semiconductor. With optimized plasma treatment parameters, we observed enhanced PL signals for 32 out of 35 many‐layer MoS2 flakes (2–15 layers) tested, indicating that this method is robust and scalable. Monolayer MoS2, while direct bandgap, has a small optical density, which limits its potential use in practical devices. The results presented here provide a material with the direct bandgap of monolayer MoS2, without reducing sample thickness, and hence optical density.  相似文献   

20.
A demonstration is presented of how significant improvements in all‐2D photodetectors can be achieved by exploiting the type‐II band alignment of vertically stacked WS2/MoS2 semiconducting heterobilayers and finite density of states of graphene electrodes. The photoresponsivity of WS2/MoS2 heterobilayer devices is increased by more than an order of magnitude compared to homobilayer devices and two orders of magnitude compared to monolayer devices of WS2 and MoS2, reaching 103 A W?1 under an illumination power density of 1.7 × 102 mW cm?2. The massive improvement in performance is due to the strong Coulomb interaction between WS2 and MoS2 layers. The efficient charge transfer at the WS2/MoS2 heterointerface and long trapping time of photogenerated charges contribute to the observed large photoconductive gain of ≈3 × 104. Laterally spaced graphene electrodes with vertically stacked 2D van der Waals heterostructures are employed for making high‐performing ultrathin photodetectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号