首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strained GaAsN T-junction quantum wires (T-QWRs) with different N contents grown on GaAs by two steps metal-organic vapor phase epitaxy in [001] and [110] directions, namely QW1 and QW2 respectively, have been investigated by photoreflectance (PR) spectroscopy. Two GaAsN T-QWRs with different N contents were formed by T-intersection of (i) a 6.4-nm-thick GaAs0.89N0.011 QW1 and a 5.2-nm-thick GaAs0.968N0.032 QW2 and (ii) a 5.0-nm-thick GaAs0.985N0.015 QW1 and a 5.2-nm-thick GaAs0.968N0.032 QW2. An evidence of a one-dimensional structure at T-intersection of the two QWs on the (001) and (110) surfaces was established by PR resonances associated with extended states in all the QW and T-QWR samples. It is found that larger lateral confinement energy than 100 meV in both of [001] and [110] directions were achieved for GaAsN T-QWRs. With increasing temperature, the transition energy of GaAsN T-QWRs decreases with a faster shrinking rate compared to that of bulk GaAs. Optical quality of GaAsN T-QWRs is found to be affected by the N-induced band edge fluctuation, which is the unique characteristic of dilute III-V-nitrides.  相似文献   

2.
Semiconductor quantum‐dot (QD) systems offering perfect site control and tunable emission energy are essential for numerous nanophotonic device applications involving spatial and spectral matching of dots with optical cavities. Herein, the properties of ordered InGaAs/GaAs QDs grown by organometallic chemical vapor deposition on substrates patterned with pyramidal recesses are reported. The seeded growth of a single QD inside each pyramid results in near‐perfect (<10 nm) control of the QD position. Moreover, efficient and uniform photoluminescence (inhomogeneous broadening <10 meV) is observed from ordered arrays of such dots. The QD emission energy can be finely tuned by varying 1) the pyramid size and 2) its position within specific patterns. This tunability is brought about by the patterning of both the chemical properties and the surface curvature features of the substrate, which allows local control of the adatom fluxes that determine the QD thickness and composition.  相似文献   

3.
The development of luminescent mercury sulfide quantum dots (HgS QDs) through the bio‐mineralization process has remained unexplored. Herein, a simple, two‐step route for the synthesis of HgS quantum dots in bovine serum albumin (BSA) is reported. The QDs are characterized by UV–vis spectroscopy, Fourier transform infrared (FT‐IR) spectroscopy, luminescence, Raman spectroscopy, transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), circular dichroism (CD), energy dispersive X‐ray analysis (EDX), and picosecond‐resolved optical spectroscopy. Formation of various sizes of QDs is observed by modifying the conditions suitably. The QDs also show tunable luminescence over the 680–800 nm spectral regions, with a quantum yield of 4–5%. The as‐prepared QDs can serve as selective sensor materials for Hg(II) and Cu(II), based on selective luminescence quenching. The quenching mechanism is found to be based on Dexter energy transfer and photoinduced electron transfer for Hg(II) and Cu(II), respectively. The simple synthesis route of protein‐capped HgS QDs would provide additional impetus to explore applications for these materials.  相似文献   

4.
All‐inorganic semiconductor perovskite quantum dots (QDs) with outstanding optoelectronic properties have already been extensively investigated and implemented in various applications. However, great challenges exist for the fabrication of nanodevices including toxicity, fast anion‐exchange reactions, and unsatisfactory stability. Here, the ultrathin, core–shell structured SiO2 coated Mn2+ doped CsPbX3 (X = Br, Cl) QDs are prepared via one facile reverse microemulsion method at room temperature. By incorporation of a multibranched capping ligand of trioctylphosphine oxide, it is found that the breakage of the CsPbMnX3 core QDs contributed from the hydrolysis of silane could be effectively blocked. The thickness of silica shell can be well‐controlled within 2 nm, which gives the CsPbMnX3@SiO2 QDs a high quantum yield of 50.5% and improves thermostability and water resistance. Moreover, the mixture of CsPbBr3 QDs with green emission and CsPbMnX3@SiO2 QDs with yellow emission presents no ion exchange effect and provides white light emission. As a result, a white light‐emitting diode (LED) is successfully prepared by the combination of a blue on‐chip LED device and the above perovskite mixture. The as‐prepared white LED displays a high luminous efficiency of 68.4 lm W?1 and a high color‐rendering index of Ra = 91, demonstrating their broad future applications in solid‐state lighting fields.  相似文献   

5.
A strategy is reported for the controlled assembly of organic‐inorganic heterostructures consisting of individual single‐walled carbon nanotubes (SWCNTs) selectively coupled to single semiconductor quantum dots (QDs). The assembly in aqueous solution was controlled towards the formation of monofunctionalized SWCNT‐QD structures. Photoluminescence studies in solution, and on surfaces at the single nanohybrid level, showed evidence of electronic coupling between the two nanostructures. The ability to covalently couple heterostructures with single particle control is crucial for the design of novel QD‐based optoelectronic and light‐energy conversion devices.  相似文献   

6.
Photoluminescence (PL), PL excitation (PLE), and time-resolved PL were used to study effects of InGaAs layers on the optical properties of InAs/GaAs quantum dots (QDs). A rich fine structure in the excited states of confined excitons (up to n = 4 quantum states) was observed, providing useful information to study the quantum states in the InAs/GaAs QDs. A significant redshift of the PL peak energy for the QDs covered by InGaAs layers was observed, attributing to the decrease of the QD strain and the lowing of the quantum confinement.  相似文献   

7.
Semiconductor quantum dots (QDs) have traditionally been synthesized in organic phase and transferred to aqueous solution by functionalizing their surface with silica, polymers, short‐chain thiol ligand, or phospholipid micelles. However, these complex steps result in i) a reduction of the quantum yield (QY) of QDs, ii) partial degrdation of the QDs, and iii) a drastic increase in the hydrodynamic size of QDs, which may hinder their biomedical applications. In this work, the fabrication and applications of cysteine‐capped CdTe/ZnTe QDs, which are directly synthesized in aqueous media, as optical probes for specific targeting of pancreatic and esophageal cancer cells in vitro are reported, as well as their capability for in vivo imaging. The CdTe/ZnTe QDs are synthesized in a one‐pot method and capped with amino acid cysteine, which contains both carboxyl and amine functional groups on their surfaces for bioconjugation. The fabricated QDs have an ultrasmall hydrodynamic diameter (3–5 nm), possess high QY (52%), and are non‐toxic to cells at experimental dosages. Confocal imaging is used to demonstrate a receptor‐mediated uptake of antibody‐conjugated QDs into pancreatic cancer cells in vitro. In vitro cytotoxicity studies (MTS‐assay) show that the IC50 value of these QDs is ≈160 µg mL?1, demonstrating low toxicity. In addition, the QDs are used for small‐animal imaging where the in vivo biocompatiblity of these QDs and their clearance following systemic injection is studied.  相似文献   

8.
Developing low‐cost and high‐quality quantum dots (QDs) or nanocrystals (NCs) and their corresponding efficient light‐emitting diodes (LEDs) is crucial for the next‐generation ultra‐high‐definition flexible displays. Here, there is a report on a room‐temperature triple‐ligand surface engineering strategy to play the synergistic role of short ligands of tetraoctylammonium bromide (TOAB), didodecyldimethylammonium bromide (DDAB), and octanoic acid (OTAc) toward “ideal” perovskite QDs with a high photoluminescence quantum yield (PLQY) of >90%, unity radiative decay in its intrinsic channel, stable ink characteristics, and effective charge injection and transportation in QD films, resulting in the highly efficient QD‐based LEDs (QLEDs). Furthermore, the QD films with less nonradiative recombination centers exhibit improved PL properties with a PLQY of 61% through dopant engineering in A‐site. The robustness of such properties is demonstrated by the fabrication of green electroluminescent LEDs based on CsPbBr3 QDs with the peak external quantum efficiency (EQE) of 11.6%, and the corresponding peak internal quantum efficiency (IQE) and power efficiency are 52.2% and 44.65 lm W?1, respectively, which are the most‐efficient perovskite QLEDs with colloidal CsPbBr3 QDs as emitters up to now. These results demonstrate that the as‐obtained QD inks have a wide range application in future high‐definition QD displays and high‐quality lightings.  相似文献   

9.
Colloidal quantum dots (CQDs) are nanoscale building blocks for bottom‐up fabrication of semiconducting solids with tailorable properties beyond the possibilities of bulk materials. Achieving ordered, macroscopic crystal‐like assemblies has been in the focus of researchers for years, since it would allow exploitation of the quantum‐confinement‐based electronic properties with tunable dimensionality. Lead‐chalcogenide CQDs show especially strong tendencies to self‐organize into 2D superlattices with micrometer‐scale order, making the array fabrication fairly simple. However, most studies concentrate on the fundamentals of the assembly process, and none have investigated the electronic properties and their dependence on the nanoscale structure induced by different ligands. Here, it is discussed how different chemical treatments on the initial superlattices affect the nanostructure, the optical, and the electronic‐transport properties. Transistors with average two‐terminal electron mobilities of 13 cm2 V?1 s?1 and contactless mobility of 24 cm2 V?1 s?1 are obtained for small‐area superlattice field‐effect transistors. Such mobility values are the highest reported for CQD devices wherein the quantum confinement is substantially present and are comparable to those reported for heavy sintering. The considerable mobility with the simultaneous preservation of the optical bandgap displays the vast potential of colloidal QD superlattices for optoelectronic applications.  相似文献   

10.
Interfaces in semiconductor heterostructures is of continuously greater significance in the trend of scaling materials down to the atomic limit. Since atoms tend to behave more irregularly around interfaces than in internal materials, accurate energy band alignment becomes a major challenge, which determines the ultimate performance of devices. Therefore, a comprehensive understanding of the interplay between heterointerface, energy band, and macro‐performance is desiderated. Here, such interplay is explored by investigating asymmetric heterointerfaces with identical fabrication parameters in multiple‐quantum‐well lasers. The unexpected asymmetry derives from the atomic discrepancy around heterointerfaces, which ultimately improves the optical property through altered valence band offsets. Strain and charge distribution around heterointerfaces are characterized via geometric phase analysis and in situ bias electron holography, respectively. Combining experiments with theories, arsenic‐enrichment at one of the interfaces is considered the origin of asymmetry. To reveal actual band alignment, valence band model is modified focusing on the transition around heterojunctions. The enhanced photoluminescence intensity reflects the alleviation of hole confinement insufficiency and the enlargement of valence band offset. The results help to advance the understanding of the general problem of interface in nanostructures and provide guidance applicable to various scenarios for micro–macro correlation.  相似文献   

11.
Here, a simplified synthesis of graphitic carbon nitride quantum dots (g‐C3N4‐QDs) with improved solution and electroluminescent properties using a one‐pot methylamine intercalation–stripping method (OMIM) to hydrothermally exfoliate QDs from bulk graphitic carbon nitride (g‐C3N4) is presented. The quantum dots synthesized by this method retain the blue photoluminescence with extremely high fluorescent quantum yield (47.0%). As compared to previously reported quantum dots, the g‐C3N4‐QDs synthesized herein have lower polydispersity and improved solution stability due to high absolute zeta‐potential (?41.23 mV), which combine to create a much more tractable material for solution processed thin film fabrication. Spin coating of these QDs yields uniform films with full coverage and low surface roughness ideal for quantum dot light‐emitting diode (QLED) fabrication. When incorporated into a functional QLED with OMIM g‐C3N4‐QDs as the emitting layer, the LED demonstrates ≈60× higher luminance (605 vs 11 Cd m?2) at lower operating voltage (9 vs 21 V), as compared to the previously reported first generation g‐C3N4 QLEDs, though further work is needed to improve device stability.  相似文献   

12.
Quantum‐dot light‐emitting diodes (QLEDs) may combine superior properties of colloidal quantum dots (QDs) and advantages of solution‐based fabrication techniques to realize high‐performance, large‐area, and low‐cost electroluminescence devices. In the state‐of‐the‐art red QLED, an ultrathin insulating layer inserted between the QD layer and the oxide electron‐transporting layer (ETL) is crucial for both optimizing charge balance and preserving the QDs' emissive properties. However, this key insulating layer demands very accurate and precise control over thicknesses at sub‐10 nm level, causing substantial difficulties for industrial production. Here, it is reported that interfacial exciton quenching and charge balance can be independently controlled and optimized, leading to devices with efficiency and lifetime comparable to those of state‐of‐the‐art devices. Suppressing exciton quenching at the ETL–QD interface, which is identified as being obligatory for high‐performance devices, is achieved by adopting Zn0.9Mg0.1O nanocrystals, instead of ZnO nanocrystals, as ETLs. Optimizing charge balance is readily addressed by other device engineering approaches, such as controlling the oxide ETL/cathode interface and adjusting the thickness of the oxide ETL. These findings are extended to fabrication of high‐efficiency green QLEDs without ultrathin insulating layers. The work may rationalize the design and fabrication of high‐performance QLEDs without ultrathin insulating layers, representing a step forward to large‐scale production and commercialization.  相似文献   

13.
Room-temperature photoluminescence (PL) at 1.55 μm from heterostructures with InAs/InGaAsN quantum dots (QDs) grown by MBE on GaAs substrates is demonstrated for the first time. The effect of nitrogen incorporated into InAs/InGaAsN QDs on the PL wavelength and intensity was studied. The integral intensity of PL from the new structure with InAs/(In)GaAsN QDs is comparable to that from a structure with InGaAsN quantum wells emitting at 1.3 μm.  相似文献   

14.
Quantum dots light‐emitting diodes (QLEDs) have attracted much interest owing to their compatibility with low‐cost inkjet printing technology and potential for use in large‐area full‐color pixelated display. However, it is challenging to fabricate high efficiency inkjet‐printed QLEDs because of the coffee ring effects and inferior resistance to solvents from the underlying polymer film during the inkjet printing process. In this study, a novel crosslinkable hole transport material, 4,4′‐bis(3‐vinyl‐9H‐carbazol‐9‐yl)‐1,1′‐biphenyl (CBP‐V) which is small‐molecule based, is synthesized and investigated for inkjet printing of QLEDs. The resulting CBP‐V film after thermal curing exhibits excellent solvent resistance properties without any initiators. An added advantage is that the crosslinked CBP‐V film has a sufficiently low highest occupied molecular orbital energy level (≈?6.2 eV), high film compactness, and high hole mobility, which can thus promote the hole injection into quantum dots (QDs) and improve the charge carrier balance within the QD emitting layers. A red QLED is successfully fabricated by inkjet printing a CBP‐V and QDs bilayer. Maximum external quantum efficiency of 11.6% is achieved, which is 92% of a reference spin‐coated QLED (12.6%). This is the first report of such high‐efficiency inkjet‐printed multilayer QLEDs and demonstrates a unique and effective approach to inkjet printing fabrication of high‐performance QLEDs.  相似文献   

15.
The development of the photostable higher‐order multiphoton‐excited (MPE) upconversion single microcrystalline material is fundamentally and technologically important, but very challenging. Here, up to five‐photon excited luminescence in a host–guest metal–organic framework (MOF) and perovskite quantum dot (QD) hybrid single crystal ZJU‐28?MAPbBr3 is shown via an in situ growth approach. Such a MOF strategy not only results in a high QD loading concentration, but also significantly diminishes the aggregation‐caused quenching (ACQ) effect, provides effective surface passivation, and greatly reduces the contact of the QDs with the external bad atmosphere due to the confinement effect and protection of the framework. These advantages make the resulting ZJU‐28?MAPbBr3 single crystals possess high PLQY of ≈51.1%, a high multiphoton action cross‐sections that can rival the current highest record (measured in toluene solution), and excellent photostability. These findings liberate the excellent luminescence and nonlinear optical properties of perovskite QDs from the solution system to the solid single‐crystal system, which provide a new avenue for the exploitation of high‐performance multiphoton excited hybrid single microcrystal for future optoelectronic and micro–nano photonic integration applications.  相似文献   

16.
We explore a strongly interacting QDs/Ag plasmonic coupling structure that enables multiple approaches to manipulate light emission from QDs. Group II–VI semiconductor QDs with unique surface states (SSs) impressively modify the plasmonic character of the contiguous Ag nanostructures whereby the localized plasmons (LPs) in the Ag nanostructures can effectively extract the non‐radiative SSs of the QDs to radiatively emit via SS–LP resonance. The SS–LP coupling is demonstrated to be readily tunable through surface‐state engineering both during QD synthesis and in the post‐synthesis stage. The combination of surface‐state engineering and band‐tailoring engineering allows us to precisely control the luminescence color of the QDs and enables the realization of white‐light emission with single‐size QDs. Being a versatile metal, the Ag in our optical device functions in multiple ways: as a support for the LPs, for optical reflection, and for electrical conduction. Two application examples of the QDs/Ag plasmon coupler for optical devices are given, an Ag microcavity + plasmon‐coupling structure and a new QD light‐emitting diode. The new QDs/Ag plasmon coupler opens exciting possibilities in developing novel light sources and biomarker detectors.  相似文献   

17.
Hybrid polymer‐plasmonic nanostructures might combine high enhancement of localized fields from metal nanoparticles with light confinement and long‐range transport in subwavelength dielectric structures. Here, the complex behavior of fluorophores coupling to Au nanoparticles within polymer nanowires, which features localized metal‐enhanced fluorescence (MEF) with unique characteristics compared to conventional structures, is reported. The intensification effect when the particle is placed in the organic filaments is remarkably higher with respect to thin films of comparable thickness, thus highlighting a specific, nanowire‐related enhancement of MEF effects. A dependence on the confinement volume in the dielectric nanowire is also indicated, with MEF significantly increasing upon reduction of the wire diameter. These findings are rationalized by finite element simulations, predicting a position‐dependent enhancement of the quantum yield of fluorophores embedded in the fibers. Calculation of the ensemble‐averaged fluorescence enhancement unveils the possibility of strongly enhancing the overall emission intensity for structures with size twice the diameter of the embedded metal particles. These new, hybrid fluorescent systems with localized enhanced emission, and the general nanowire‐enhanced MEF effects associated to them, are highly relevant for developing nanoscale light‐emitting devices with high efficiency and intercoupled through nanofiber networks, highly sensitive optical sensors, and novel laser architectures.  相似文献   

18.
Das D  Samanta A 《Nanotechnology》2011,22(5):055601
Quantum confinement in zero-dimensional silicon nanocrystals (nC) in the quantum dot (QD) configuration has triggered a tremendous interest in nanostructured device technology. However, the formation of Si-QDs eventually proceeds through multi-step routes and involves high temperature processing that impedes preferred device configuration. The present work demonstrates the formation of nC-Si QDs of controlled size, density and distribution through one-step and spontaneous plasma processing, at a low substrate temperature (300?°C) compatible for device fabrication. Direct growth of nC-Si/SiO(x) core/shell quantum dots embedded in the a-Si matrix, 6.4-3.7 nm in diameter and with number density in the range ~ 6 × 10(9)-1 × 10(11) cm(-2) has been accomplished, following a novel route where He dilution to SiH(4) in RF plasma CVD has been found instrumental. On gradual reduction in the size of QDs, splitting of the energy bands widens the optical band gap and induces visible photoluminescence that appears controllable by tuning the size and density of the dots. This low temperature and spontaneous plasma processing of nC-Si/SiO(x) core/shell QDs that exhibit the quantum size effect in photoluminescence is being reported for the first time.  相似文献   

19.
Low threshold micro/nanolasers have attracted extensive attention for wide applications in high‐density storage and optical communication. However, constrained by quantum efficiency and crystalline quality, conventional semiconductor small‐sized lasers are still subjected to a high lasing threshold. In this work, a low‐threshold planar laser based on high‐quality single‐crystalline hexagonal CdS nanoplatelets (NPLs) using a self‐limited epitaxial growth method is demonstrated. The as‐grown CdS NPLs show multiple whispering‐gallery‐mode lasing at room temperature with a threshold of ≈0.6 µJ cm?2, which is the lowest value among reported CdS‐based lasers. Through power‐dependent lasing studies at 77 K, the lasing action is demonstrated to originate from a exciton–exciton scattering process. Furthermore, the edge length‐ and thickness‐dependent lasing threshold studies reveal that the threshold is inversely proportional to the second power of lateral edge length while partially affected by vertical thickness, and the lasing modes can be sustained in NPLs as thin as 60 nm. The lowest threshold emerges with the thickness of ≈110 nm due to stronger energy confinement in the vertical Fabry–Pérot cavity. The results not only open up a new avenue to fabricate nonlayered material‐based coherent light sources, but also advocate the promise of nonlayered semiconductor materials for the development of novel optoelectronic devices.  相似文献   

20.
Nanowires (NWs) with radial p‐i‐n junction have advantages, such as large junction area and small influence from the surface states, which can lead to highly efficient material use and good device quantum efficiency. However, it is difficult to make high‐quality core–shell NW devices, especially single NW devices. Here, the key factors during the growth and fabrication process that influence the quality of single core–shell p‐i‐n NW devices are studied using GaAs(P) NW photovoltaics as an example. By p‐doping and annealing, good ohmic contact is achieved on NWs with a diameter as small as 50–60 nm. Single NW photovoltaics are subsequently developed and a record fill factor of 80.5% is shown. These results bring valuable information for making single NW devices, which can further benefit the development of high‐density integration circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号