首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Objects can be identified based on their distinctive scattering signatures in multiple physical areas such as optics, electromagnetics, and thermotics. To ensure comprehensive stealth and camouflage capabilities, antisense devices with multiphysical field coupling are highly desired. Herein, a multifunctional antisense metadevice that achieves stealth in the microwave band while also generating multiple camouflage images from the original object's position during the heat conduction process is proposed and demonstrated. The metadevice combines both antimicrowave detection and camouflage infrared imaging capabilities, resulting in broadband electromagnetic stealth and thermal camouflage effect. Experimental and simulation results confirm the metadevice's ability to achieve these multifunctional capabilities in temperature-dependent cases. The development of such multifunctional devices that span physical fields provides new avenues for the design and preparation of multifunctional structures.  相似文献   

3.
Optical metamaterials offer the tantalizing possibility of creating extraordinary optical properties through the careful design and arrangement of subwavelength structural units. Gyroid‐structured optical metamaterials possess a chiral, cubic, and triply periodic bulk morphology that exhibits a redshifted effective plasma frequency. They also exhibit a strong linear dichroism, the origin of which is not yet understood. Here, the interaction of light with gold gyroid optical metamaterials is studied and a strong correlation between the surface morphology and its linear dichroism is found. The termination of the gyroid surface breaks the cubic symmetry of the bulk lattice and gives rise to the observed wavelength‐ and polarization‐dependent reflection. The results show that light couples into both localized and propagating plasmon modes associated with anisotropic surface protrusions and the gaps between such protrusions. The localized surface modes give rise to the anisotropic optical response, creating the linear dichroism. Simulated reflection spectra are highly sensitive to minute details of these surface terminations, down to the nanometer level, and can be understood with analogy to the optical properties of a 2D anisotropic metasurface atop a 3D isotropic metamaterial. This pronounced sensitivity to the subwavelength surface morphology has significant consequences for both the design and application of optical metamaterials.  相似文献   

4.
Current‐induced magnetization manipulation is a key issue for spintronic applications. This manipulation must be fast, deterministic, and nondestructive in order to function in device applications. Therefore, single‐ electronic‐pulse‐driven deterministic switching of the magnetization on the picosecond timescale represents a major step toward future developments of ultrafast spintronic systems. Here, the ultrafast magnetization dynamics in engineered Gdx [FeCo]1?x ‐based structures are studied to compare the effect of femtosecond laser and hot‐electron pulses. It is demonstrated that a single femtosecond hot‐electron pulse causes deterministic magnetization reversal in either Gd‐rich and FeCo‐rich alloys similarly to a femtosecond laser pulse. In addition, it is shown that the limiting factor of such manipulation for perpendicular magnetized films arises from the formation of a multidomain state due to dipolar interactions. By performing time‐resolved measurements under various magnetic fields, it is demonstrated that the same magnetization dynamics are observed for both light and hot‐electron excitation, and that the full magnetization reversal takes place within 40 ps. The efficiency of the ultrafast current‐induced magnetization manipulation is enhanced due to the ballistic transport of hot electrons before reaching the GdFeCo magnetic layer.  相似文献   

5.
Semiconductor quantum well (QW) light‐emitting diodes (LEDs) have limited temporal modulation bandwidth of a few hundred MHz due to the long carrier recombination lifetime. Material doping and structure engineering typically leads to incremental change in the carrier recombination rate, whereas the plasmonic‐based Purcell effect enables dramatic improvement for modulation frequency beyond the GHz limit. By stacking Ag‐Si multilayers, the resulting hyperbolic metamaterials (HMMs) have shown tunability in the plasmonic density of states for enhancing light emission at various wavelengths. Here, nanopatterned Ag‐Si multilayer HMMs are utilized for enhancing spontaneous carrier recombination rates in InGaN/GaN QWs. An enhancement of close to 160‐fold is achieved in the spontaneous recombination rate across a broadband of working wavelengths accompanied by over tenfold enhancement in the QW peak emission intensity, thanks to the outcoupling of dominating HMM modes. The integration of nanopatterned HMMs with InGaN QWs will lead to ultrafast and bright QW LEDs with a 3 dB modulation bandwidth beyond 100 GHz for applications in high‐speed optoelectronic devices, optical wireless communications, and light‐fidelity networks.  相似文献   

6.
7.
8.
9.
Although various photonic devices inspired by natural materials have been developed, there is no research focusing on multibands adaptability, which is not conducive to the advancement of materials science. Herein, inspired by the moth eye surface model, state‐of‐the‐art hierarchical metamaterials (MMs) used as tunable devices in multispectral electromagnetic‐waves (EMWs) frequency range, from microwave to ultraviolet (UV), are designed and prepared. Experimentally, the robust broad bandwidth of microwave absorption greater than 90% (reflection loss (RL) < ?10 dB) covering almost entire X and Ku bands (8.04–17.88 GHz) under a deep sub‐wavelength thickness (1 mm) is demonstrated. The infrared emissivity is reduced and does not affect the microwave absorption simultaneously, further realizing anti‐reflection and camouflage via the strong visible light scattering by the microstructure, and can prevent degradation by reducing the transmittance to less than 10% over the whole near UV band, as well as having hydrophobic abilities. The mechanism explored via simulation model is that topological effects are found in the bio‐structure. This discovery points to a pathway for using natural models to overcome physical limits of MMs and has promising prospect in novel photonic materials.  相似文献   

10.
Solution‐processed lead iodide (PbI2) governs the charge transport characteristics in the hybrid metal halide perovskites. Besides being a precursor in enhancing the performance of perovskite solar cells, PbI2 alone offers remarkable optical and ultrasensitive photoresponsive properties that remain largely unexplored. Here, the photophysics and the ultrafast carrier dynamics of the solution processed PbI2 thin film is probed experimentally. A PbI2 integrated metamaterial photonic device with switchable picosecond time response at extremely low photoexcitation fluences is demonstrated. Further, findings show strongly confined terahertz field induced tailoring of sensitivity and switching time of the metamaterial resonances for different thicknesses of PbI2 thin film. The approach has two far reaching consequences: the first lead‐iodide‐based ultrafast photonic device and resonantly confined electromagnetic field tailored transient nonequilibrium dynamics of PbI2 which could also be applied to a broad range of semiconductors for designing on‐chip, ultrafast, all‐optical switchable photonic devices.  相似文献   

11.
12.
The mechanism of Cooper pair formation and its underlying physics has long occupied the investigation into high temperature (high‐Tc) cuprate superconductors. One of the ways to unravel this is to observe the ultrafast response present in the charge carrier dynamics of a photoexcited specimen. This results in an interesting approach to exploit the dissipation‐less dynamic features of superconductors to be utilized for designing high‐performance active subwavelength photonic devices with extremely low‐loss operation. Here, dual‐channel, ultrafast, all‐optical switching and modulation between the resistive and the superconducting quantum mechanical phase is experimentally demonstrated. The ultrafast phase switching is demonstrated via modulation of sharp Fano resonance of a high‐Tc yttrium barium copper oxide (YBCO) superconducting metamaterial device. Upon photoexcitation by femtosecond light pulses, the ultrasensitive cuprate superconductor undergoes dual dissociation–relaxation dynamics, with restoration of superconductivity within a cycle, and thereby establishes the existence of dual switching windows within a timescale of 80 ps. Pathways are explored to engineer the secondary dissociation channel which provides unprecedented control over the switching speed. Most importantly, the results envision new ways to accomplish low‐loss, ultrafast, and ultrasensitive dual‐channel switching applications that are inaccessible through conventional metallic and dielectric based metamaterials.  相似文献   

13.
The coupling of phonons to electrons and other phonons plays a defining role in material properties, such as charge and energy transport, light emission, and superconductivity. In atomic solids, phonons are delocalized over the 3D lattice, in contrast to molecular solids where localized vibrations dominate. Here, a hierarchical semiconductor that expands the phonon space by combining localized 0D modes with delocalized 2D and 3D modes is described. This material consists of superatomic building blocks (Re6Se8) covalently linked into 2D sheets that are stacked into a layered van der Waals lattice. Using transient reflectance spectroscopy, three types of coherent phonons are identified: localized 0D breathing modes of isolated superatom, 2D synchronized twisting of superatoms in layers, and 3D acoustic interlayer deformation. These phonons are coupled to the electronic degrees of freedom to varying extents. The presence of local phonon modes in an extended crystal opens the door to controlling material properties from hierarchical phonon engineering.  相似文献   

14.
All the optical properties of materials are derived from dielectric function. In spectral region where the dielectric permittivity approaches zero, known as epsilon‐near‐zero (ENZ) region, the propagating light within the material attains a very high phase velocity, and meanwhile the material exhibits strong optical nonlinearity. The interplay between the linear and nonlinear optical response in these materials thus offers unprecedented pathways for all‐optical control and device design. Here the authors demonstrate ultrafast all‐optical modulation based on a typical ENZ material of indium tin oxide (ITO) nanocrystals (NCs), accessed by a wet‐chemistry route. In the ENZ region, the authors find that the optical response in these ITO NCs is associated with a strong nonlinear character, exhibiting sub‐picosecond response time (corresponding to frequencies over 2 THz) and modulation depth up to ≈160%. This large optical nonlinearity benefits from the highly confined geometry in addition to the ENZ enhancement effect of the ITO NCs. Based on these ENZ NCs, the authors successfully demonstrate a fiber optical switch that allows switching of continuous laser wave into femtosecond laser pulses. Combined with facile processibility and tunable optical properties, these solution‐processed ENZ NCs may offer a scalable and printable material solution for dynamic photonic and optoelectronic devices.  相似文献   

15.
Nanolattices are promoted as next‐generation multifunctional high‐performance materials, but their mechanical response is limited to extreme strength yet brittleness, or extreme deformability but low strength and stiffness. Ideal impact protection systems require high‐stress plateaus over long deformation ranges to maximize energy absorption. Here, glassy carbon nanospinodals, i.e., nanoarchitectures with spinodal shell topology, combining ultrahigh energy absorption and exceptional strength and stiffness at low weight are presented. Noncatastrophic deformation up to 80% strain, and energy absorption up to one order of magnitude higher than for other nano‐, micro‐, macro‐architectures and solids, and state‐of‐the‐art impact protection structures are shown. At the same time, the strength and stiffness are on par with the most advanced yet brittle nanolattices, demonstrating true multifunctionality. Finite element simulations show that optimized shell thickness‐to‐curvature‐radius ratios suppress catastrophic failure by impeding propagation of dangerously oriented cracks. In contrast to most micro‐ and nano‐architected materials, spinodal architectures may be easily manufacturable on an industrial scale, and may become the next generation of superior cellular materials for structural applications.  相似文献   

16.
We have performed a two-color time-resolved magneto-optical Kerr effect (MOKE) study of a ferromagnetic InMnAs/GaSb heterostructure. We observed ultrafast photoinduced changes in the MOKE signal induced by a large density of spin-polarized transient carriers created only within the InMnAs layer using intense 140 fs mid-infrared pulses. Our data clearly demonstrates that magnetic properties, e.g., remanence and coercivity, can be strongly modified. The dependence of these changes on the time delay, pump polarization, pump intensity, and sample temperature is discussed.  相似文献   

17.
The optical Kerr nonlinearity of plasmonic metals provides enticing prospects for developing reconfigurable and ultracompact all‐optical modulators. In nanostructured metals, the coherent coupling of light energy to plasmon resonances creates a nonequilibrium electron distribution at an elevated electron temperature that gives rise to significant Kerr optical nonlinearities. Although enhanced nonlinear responses of metals facilitate the realization of efficient modulation devices, the intrinsically slow relaxation dynamics of the photoexcited carriers, primarily governed by electron–phonon interactions, impedes ultrafast all‐optical modulation. Here, femtosecond (≈190 fs) all‐optical modulation in plasmonic systems via the activation of relaxation pathways for hot electrons at the interface of metals and electron acceptor materials, following an on‐resonance excitation of subradiant lattice plasmon modes, is demonstrated. Both the relaxation kinetics and the optical nonlinearity can be actively tuned by leveraging the spectral response of the plasmonic design in the linear regime. The findings offer an opportunity to exploit hot‐electron‐induced nonlinearities for design of self‐contained, ultrafast, and low‐power all‐optical modulators based on plasmonic platforms.  相似文献   

18.
19.
The remarkable emergence of all‐dielectric meta‐photonics governed by the physics of high‐index dielectric materials offers a low‐loss platform for efficient manipulation and subwavelength control of electromagnetic waves from microwaves to visible frequencies. Dielectric metasurfaces can focus electromagnetic waves, generate structured beams and vortices, enhance local fields for advanced sensing, and provide novel functionalities for classical and quantum technologies. Recent advances in meta‐photonics are associated with the exploration of exotic electromagnetic modes called the bound states in the continuum (BICs), which offer a simple interference mechanism to achieve large quality factors (Q) through excitation of supercavity modes in dielectric nanostructures and resonant metasurfaces. Here, a BIC‐driven terahertz metasurface with dynamic control of high‐Q silicon supercavities that are reconfigurable at a nanosecond timescale is experimentally demonstrated. It is revealed that such supercavities enable low‐power, optically induced terahertz switching and modulation of sharp resonances for potential applications in lasing, mode multiplexing, and biosensing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号