首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solar‐driven evaporation is a promising way of using abundant solar energy for desalinating polluted water or seawater, which addresses the challenge of global fresh water scarcity. Cost‐effectiveness and durability are key factors for practical solar‐driven evaporation technology. The present cutting‐edge techniques mostly rely on costly and complex fabricated nanomaterials, such as metallic nanoparticles, nanotubes, nanoporous hydrogels, graphene, and graphene derivatives. Herein, a black nylon fiber (BNF) flocking board with a vertically aligned array prepared via a convenient electrostatic flocking technique is reported, presenting an extremely high solar absorbance (99.6%), a water self‐supply capability, and a unique salt self‐dissolution capability for seawater desalination. Through a carefully designed 3D structure, a plug‐in‐type BNF flocking board steam generator realizes a high evaporation rate of 2.09 kg m?2 h?1 under 1 kW m?2 solar illumination, well beyond its corresponding upper limit of 1.50 kg m?2 h?1 (assuming 100% solar energy is being used for evaporation latent heat). With the advantages of high‐efficiency fabrication, cost‐effectiveness, high evaporation rate, and high endurance in seawater desalination, this 3D design provides a new strategy to build up an economic, sustainable, and rapid solar‐driven steam generation system.  相似文献   

2.
Using solar energy to generate steam is a clean and sustainable approach to addressing the issue of water shortage. The current challenge for solar steam generation is to develop easy‐to‐manufacture and scalable methods which can convert solar irradiation into exploitable thermal energy with high efficiency. Although various material and structure designs have been reported, high efficiency in solar steam generation usually can be achieved only at concentrated solar illumination. For the first time, 3D printing to construct an all‐in‐one evaporator with a concave structure for high‐efficiency solar steam generation under 1 sun illumination is used. The solar‐steam‐generation device has a high porosity (97.3%) and efficient broadband solar absorption (>97%). The 3D‐printed porous evaporator with intrinsic low thermal conductivity enables heat localization and effectively alleviates thermal dissipation to the bulk water. As a result, the 3D‐printed evaporator has a high solar steam efficiency of 85.6% under 1 sun illumination (1 kW m?2), which is among the best compared with other reported evaporators. The all‐in‐one structure design using the advanced 3D printing fabrication technique offers a new approach to solar energy harvesting for high‐efficiency steam generation.  相似文献   

3.
Solar‐thermal water evaporation, as a promising method for clean water production, has attracted increasing attention. However, solar water evaporators that exhibit both high water vapor generation ability and anti‐oil‐fouling ability have not been reported. Here, a unique metal–organic‐framework‐based hierarchical structure, referred to as MOF‐based hierarchical structure (MHS), is rationally designed and prepared, which simultaneously displays a high solar absorption and a superhydrophilic and underwater superoleophobic surface property. As a proof‐of‐concept application, a device prepared from the MHS can achieve a high solar‐thermal water evaporation rate of 1.50 kg m?2 h?1 under 1 sun illumination. Importantly, the MHS also possesses an excellent anti‐oil‐fouling property, ensuring its superior water evaporation performance even in oil‐contaminated water. The high solar‐thermal water evaporation rate and anti‐oil‐fouling property make the MHS a promising material for the solar‐thermal water production.  相似文献   

4.
Solar steaming has emerged as a promising green technology that can address the global issue of scarcity of clean water. However, developing high‐performance, cost‐effective, and manufacturable solar‐steaming materials, and portable solar steaming‐collection systems for individuals remains a great challenge. Here, a one‐step, low‐cost, and mass‐producible synthesis of polypyrrole (PPy) origami‐based photothermal materials, and an original portable low‐pressure controlled solar steaming‐collection unisystem, offering synergetic high rates in both water evaporation and steam collection, are reported. Due to enhanced areas for vapor dissipation, the PPy origami improves the water evaporation rate by at least 71% to 2.12 kg m?2 h?1 from that of a planar structure and exhibits a solar–thermal energy conversion efficiency of 91.5% under 1 Sun. When further controlling the pressure to ≈0.17 atm in the steaming‐collection unisystem, the water collection rate improves by up to 52% systematically and dramatically. Although partial energy is utilized toward obtaining low‐pressure, evaluations show that the overall energy efficiency is improved remarkably in the low‐pressure system compared to that in ambient pressure. Furthermore, the device demonstrates effective decontamination of heavy metals, bacteria, and desalination. This work can inspire new paradigms toward developing high‐performance solar steaming technologies for individuals and households.  相似文献   

5.
Electrical devices generate heat at work. The heat should be transferred away immediately by a thermal manager to keep proper functions, especially for high‐frequency apparatuses. Besides high thermal conductivity (K ), the thermal manager material requires good foldability for the next generation flexible electronics. Unfortunately, metals have satisfactory ductility but inferior K (≤429 W m?1 K?1), and highly thermal‐conductive nonmetallic materials are generally brittle. Therefore, fabricating a foldable macroscopic material with a prominent K is still under challenge. This study solves the problem by folding atomic thin graphene into microfolds. The debris‐free giant graphene sheets endow graphene film (GF) with a high K of 1940 ± 113 W m?1 K?1. Simultaneously, the microfolds render GF superflexible with a high fracture elongation up to 16%, enabling it more than 6000 cycles of ultimate folding. The large‐area multifunctional GFs can be easily integrated into high‐power flexible devices for highly efficient thermal management.  相似文献   

6.
Wearable devices and systems demand multifunctional units with intelligent and integrative functions. Smart fibers with response to external stimuli, such as electrical, thermal, and photonic signals, etc., as well as offering energy storage/conversion are essential units for wearable electronics, but still remain great challenges. Herein, flexible, strong, and self‐cleaning graphene‐aerogel composite fibers, with tunable functions of thermal conversion and storage under multistimuli, are fabricated. The fibers made from porous graphene aerogel/organic phase‐change materials coated with hydrophobic fluorocarbon resin render a wide range of phase transition temperature and enthalpy (0–186 J g?1). The strong and compliant fibers are twisted into yarn and woven into fabrics, showing a self‐clean superhydrophobic surface and excellent multiple responsive properties to external stimuli (electron/photon/thermal) together with reversible energy storage and conversion. Such aerogel‐directed smart fibers promise for broad applications in the next‐generation of wearable systems.  相似文献   

7.
The solar steam process, akin to the natural water cycle, is considered to be an attractive approach to address water scarcity issues globally. However, water extraction from groundwater, for example, has not been demonstrated using these existing technologies. Additionally, there are major unaddressed challenges in extracting potable water from seawater including salt accumulation and long‐term evaporation stability, which warrant further investigation. Herein, a high‐performance solar steam device composed entirely of natural wood is reported. The pristine, natural wood is cut along the transverse direction and the top surface is carbonized to create a unique bilayer structure. This tree‐inspired design offers distinct advantages for water extraction, including rapid water transport and evaporation in the mesoporous wood, high light absorption (≈99%) within the surface carbonized open wood channels, a low thermal conductivity to avoid thermal loss, and cost effectiveness. The device also exhibits long‐term stability in seawater without salt accumulation as well as high performance for underground water extraction. The tree‐inspired design offers an inexpensive and scalable solar energy harvesting and steam generation technology that can provide clean water globally, especially for rural or remote areas where water is not only scarce but also limited by water extraction materials and methods.  相似文献   

8.
The development of materials with efficient heat dissipation capability has become essential for next‐generation integrated electronics and flexible smart devices. Here, a 3D hybridized carbon film with graphene nanowrinkles and microhinge structures by a simple solution dip‐coating technique using graphene oxide (GO) on polyimide (PI) skeletons, followed by high‐temperature annealing, is constructed. Such a design provides this graphitized GO/PI (g‐GO/PI) film with superflexibility and ultrahigh thermal conductivity in the through‐plane (150 ± 7 W m‐1 K‐1) and in‐plane (1428 ± 64 W m‐1 K‐1) directions. Its superior thermal management capability compared with aluminum foil is also revealed by proving its benefit as a thermal interface material. More importantly, by coupling the hypermetallic thermal conductivity in two directions, a novel type of carbon film origami heat sink is proposed and demonstrated, outperforming copper foil in terms of heat extraction and heat transfer for high‐power devices. The hypermetallic heat dissipation performance of g‐GO/PI carbon film not only shows its promising application as an emerging thermal management material, but also provides a facile and feasible route for the design of next‐generation heat dissipation components for high‐power flexible smart devices.  相似文献   

9.
Transparent, ultradrawn, ultrahigh molecular weight polyethylene (UHMWPE)/graphene nanocomposite films with a high thermal conductivity are successfully fabricated by solution‐casting and solid‐state drawing. It is found that the low optical transmittance (<75%) of the ultradrawn UHMWPE/graphene composite films is drastically improved (>90%) by adding 2‐(2H‐benzontriazol‐2‐yl)‐4,6‐ditertpentylphenol (BZT) as a second additive. This high transmission is interpreted in terms of a reduced void content in the composite films and the improved dispersion of graphene both of which decrease light scattering. The high thermal conductivity is attributed to the π–π interaction between BZT and graphene. In addition, a high specific thermal conductivity of ≈75 W m?1 K?1 ρ?1 of the ultradrawn UHMWPE/graphene/BZT composite films is obtained, which is higher than most metals and polymer nanocomposite. These transparent films are potentially excellent candidates for thermal management in various applications due to a combination of low density, ease of processing, and high thermal conductivity.  相似文献   

10.
Solar steam generation is emerging as a promising technology, for its potential in harvesting solar energy for various applications such as desalination and sterilization. Recent studies have reported a variety of artificial structures that are designed and fabricated to improve energy conversion efficiencies by enhancing solar absorption, heat localization, water supply, and vapor transportation. Mushrooms, as a kind of living organism, are surprisingly found to be efficient solar steam‐generation devices for the first time. Natural and carbonized mushrooms can achieve ≈62% and ≈78% conversion efficiencies under 1 sun illumination, respectively. It is found that this capability of high solar steam generation is attributed to the unique natural structure of mushroom, umbrella‐shaped black pileus, porous context, and fibrous stipe with a small cross section. These features not only provide efficient light absorption, water supply, and vapor escape, but also suppress three components of heat losses at the same time. These findings not only reveal the hidden talent of mushrooms as low‐cost materials for solar steam generation, but also provide inspiration for the future development of high‐performance solar thermal conversion devices.  相似文献   

11.
Porous single crystals are promising candidates for solar fuel production owing to their long range charge diffusion length, structural coherence, and sufficient reactive sites. Here, a simple template‐free method of growing a selectively branched, 2D anatase TiO2 porous single crystalline nanostructure (PSN) on fluorine‐doped tin oxide substrate is demonstrated. An innovative ion exchange–induced pore‐forming process is designed to successfully create high porosity in the single‐crystalline nanostructure with retention of excellent charge mobility and no detriment to crystal structure. PSN TiO2 film delivers a photocurrent of 1.02 mA cm?2 at a very low potential of 0.4 V versus reversible hydrogen electrode (RHE) for photo‐electrochemical water splitting, closing to the theoretical value of TiO2 (1.12 mA cm?2). Moreover, the current–potential curve featuring a small potential window from 0.1 to 0.4 V versus RHE under one‐sun illumination has a near‐ideal shape predicted by the Gartner Model, revealing that the charge separation and surface reaction on the PSN TiO2 photoanode are very efficient. The photo‐electrochemical water splitting performance of the films indicates that the ion exchange–assisted synthesis strategy is effective in creating large surface area and single‐crystalline porous photoelectrodes for efficient solar energy conversion.  相似文献   

12.
Nitrogen‐doped graphene (NG) with wrinkled and bubble‐like texture is fabricated by a thermal treatment. Especially, a novel sonication‐assisted pretreatment with nitric acid is used to further oxidize graphene oxide and its binding with melamine molecules. There are many bubble‐like nanoflakes with a dimension of about 10 nm appeared on the undulated graphene nanosheets. The bubble‐like texture provides more active sites for effective ion transport and reversible capacitive behavior. The specific surface area of NG (5.03 at% N) can reach up to 438.7 m2 g?1, and the NG electrode demonstrates high specific capacitance (481 F g?1 at 1 A g?1, four times higher than reduced graphene oxide electrode (127.5 F g?1)), superior cycle stability (the capacitance retention of 98.9% in 2 m KOH and 99.2% in 1 m H2SO4 after 8000 cycles), and excellent energy density (42.8 Wh kg?1 at power density of 500 W kg?1 in 2 m KOH aqueous electrolyte). The results indicate the potential use of NG as graphene‐based electrode material for energy storage devices.  相似文献   

13.
Solar steam generation with subsequent steam recondensation has been regarded as one of the most promising techniques to utilize the abundant solar energy and sea water or other unpurified water through water purification, desalination, and distillation. Although tremendous efforts have been dedicated to developing high‐efficiency solar steam generation devices, challenges remain in terms of the relatively low efficiency, complicated fabrications, high cost, and inability to scale up. Here, inspired by the water transpiration behavior of trees, the use of carbon nanotube (CNT)‐modified flexible wood membrane (F‐Wood/CNTs) is demonstrated as a flexible, portable, recyclable, and efficient solar steam generation device for low‐cost and scalable solar steam generation applications. Benefitting from the unique structural merits of the F‐Wood/CNTs membrane—a black CNT‐coated hair‐like surface with excellent light absorbability, wood matrix with low thermal conductivity, hierarchical micro‐ and nanochannels for water pumping and escaping, solar steam generation device based on the F‐Wood/CNTs membrane demonstrates a high efficiency of 81% at 10 kW cm?2, representing one of the highest values ever‐reported. The nature‐inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase‐change applications.  相似文献   

14.
Interfacial solar vapor generation is considered to be an efficient and eco‐friendly technology for harvesting solar energy and providing freshwater. However, the efficient and long‐term steady evaporation of seawater under 1 sun becomes a critical issue when it comes to practical applications. Based on this issue, a special double‐layer structure, which contains a metal–organic‐framework‐derived hierarchical porous carbon membrane (HPCM) for solar absorption and a polystyrene sulfonate (PSS)@Cu3(BTC)3?3H2O (HKUST‐1)/single‐walled carbon nanotube (SWCNT) (PHS) membrane for water supply and salt blocking, is designed in this work. The converted heat is utilized efficiently in situ to drive the evaporation of water‐trapped HPCM. The PHS membrane with PSS modified channels successfully prevents the deposition of salt. Due to the synergistic combination of the HPCM and PHS membranes, the device exhibits a remarkably high water evaporation rate of 1.38 kg m?2 h?1 and solar‐vapor generation efficiency of 90.8% under 1 sun.  相似文献   

15.
Biological electrogenic systems use protein‐based ionic pumps to move salt ions uphill across a cell membrane to accumulate an ion concentration gradient from the equilibrium physiological environment. Toward high‐performance and robust artificial electric organs, attaining an antigradient ion transport mode by fully abiotic materials remains a great challenge. Herein, a light‐driven proton pump transport phenomenon through a Janus graphene oxide membrane (JGOM) is reported. The JGOM is fabricated by sequential deposition of graphene oxide (GO) nanosheets modified with photobase (BOH) and photoacid (HA) molecules. Upon ultraviolet light illumination, the generation of a net protonic photocurrent through the JGOM, from the HA‐GO to the BOH‐GO side, is observed. The directional proton flow can thus establish a transmembrane proton concentration gradient of up to 0.8 pH units mm?2 membrane area at a proton transport rate of 3.0 mol h?1 m?2. Against a concentration gradient, antigradient proton transport can be achieved. The working principle is explained in terms of asymmetric surface charge polarization on HA‐GO and BOH‐GO multilayers triggered by photoisomerization reactions, and the consequent intramembrane proton concentration gradient. The implementation of membrane‐scale light‐harvesting 2D nanofluidic system that mimics the charge process of the bioelectric organs makes a straightforward step toward artificial electrogenic and photosynthetic applications.  相似文献   

16.
The development of manganese dioxide as the cathode for aqueous Zn‐ion battery (ZIB) is limited by the rapid capacity fading and material dissolution. Here, a highly reversible aqueous ZIB using graphene scroll‐coated α‐MnO2 as the cathode is proposed. The graphene scroll is uniformly coated on the MnO2 nanowire with an average width of 5 nm, which increases the electrical conductivity of the MnO2 nanowire and relieves the dissolution of the cathode material during cycling. An energy density of 406.6 Wh kg?1 (382.2 mA h g?1) at 0.3 A g?1 can be reached, which is the highest specific energy value among all the cathode materials for aqueous Zn‐ion battery so far, and good long‐term cycling stability with 94% capacity retention after 3000 cycles at 3 A g?1 are achieved. Meanwhile, a two‐step intercalation mechanism that Zn ions first insert into the layers and then the tunnels of MnO2 framework is proved by in situ X‐ray diffraction, galvanostatic intermittent titration technique, and X‐ray photoelectron spectroscopy characterizations. The graphene scroll‐coated metallic oxide strategy can also bring intensive interests for other energy storage systems.  相似文献   

17.
A macroscopic film (2.5 cm × 2.5 cm) made by layer‐by‐layer assembly of 100 single‐layer polycrystalline graphene films is reported. The graphene layers are transferred and stacked one by one using a wet process that leads to layer defects and interstitial contamination. Heat‐treatment of the sample up to 2800 °C results in the removal of interstitial contaminants and the healing of graphene layer defects. The resulting stacked graphene sample is a freestanding film with near‐perfect in‐plane crystallinity but a mixed stacking order through the thickness, which separates it from all existing carbon materials. Macroscale tensile tests yields maximum values of 62 GPa for the Young's modulus and 0.70 GPa for the fracture strength, significantly higher than has been reported for any other macroscale carbon films; microscale tensile tests yield maximum values of 290 GPa for the Young's modulus and 5.8 GPa for the fracture strength. The measured in‐plane thermal conductivity is exceptionally high, 2292 ± 159 W m?1 K?1 while in‐plane electrical conductivity is 2.2 × 105 S m?1. The high performance of these films is attributed to the combination of the high in‐plane crystalline order and unique stacking configuration through the thickness.  相似文献   

18.
Nitrogen‐doped graphene exhibits high electrocatalytic activity toward the oxygen reduction reaction (ORR), which is essential for many renewable energy technologies. To maximize the catalytic efficiency, it is desirable to have both a high concentration of robust nitrogen dopants and a large accessible surface of the graphene electrodes for rapid access of oxygen to the active sites. Here, 3D bicontinuous nitrogen‐doped mesoporous graphene synthesized by a low‐temperature carbide‐mediated graphene‐growth method is reported. The mesoporous graphene has a mesoscale pore size of ≈25 nm and large specific surface area of 1015 m2 g?1, which can effectively host and stabilize a high concentration of nitrogen dopants. Accordingly, it shows an excellent electrocatalytic activity toward the ORR with an efficient four‐electron‐dominated pathway and high durability in alkaline media. The synthesis route developed herein provides a new economic approach to synthesize bicontinuous porous graphene materials with tunable characteristic length, porosity, and chemical doping as high efficiency electrocatalysts for a wide range of electrochemical reactions.  相似文献   

19.
To achieve excellent photoelectrochemical water‐splitting activity, photoanode materials with high light absorption and good charge‐separation efficiency are essential. One effective strategy for the production of materials satisfying these requirements is to adjust their band structure and corresponding bandgap energy by introducing oxygen vacancies. A simple chemical reduction method that can systematically generate oxygen vacancies in barium stannate (BaSnO3 (BSO)) crystal is introduced, which thus allows for precise control of the bandgap energy. A BSO photoanode with optimum oxygen‐vacancy concentration (8.7%) exhibits high light‐absorption and good charge‐separation capabilities. After deposition of FeOOH/NiOOH oxygen evolution cocatalysts on its surface, this photoanode shows a remarkable photocurrent density of 7.32 mA cm?2 at a potential of 1.23 V versus a reversible hydrogen electrode under AM1.5G simulated sunlight. Moreover, a tandem device constructed with a perovskite solar cell exhibits an operating photocurrent density of 6.84 mA cm?2 and stable gas production with an average solar‐to‐hydrogen conversion efficiency of 7.92% for 100 h, thus functioning as an outstanding unbiased water‐splitting system.  相似文献   

20.
Molecular surfactants are widely used to control low‐dimensional morphologies, including 2D nanomaterials in colloidal chemical synthesis, but it is still highly challenging to accurately control single‐layer growth for 2D materials. A scalable stacking‐hinderable strategy to not only enable exclusive single‐layer growth mode for transition metal dichalcogenides (TMDs) selectively sandwiched by surfactant molecules but also retain sandwiched single‐layer TMDs' photoredox activities is developed. The single‐layer growth mechanism is well explained by theoretical calculation. Three types of single‐layer TMDs, including MoS2, WS2, and ReS2, are successfully synthesized and demonstrated in solar H2 fuel production from hydrogen‐stored liquid carrier—methanol. Such H2 fuel production from single‐layer MoS2 nanosheets is COx‐free and reliably workable under room temperature and normal pressure with the generation rate reaching ≈617 µmole g?1 h?1 and excellent photoredox endurability. This strategy opens up the feasible avenue to develop methanol‐storable solar H2 fuel with facile chemical rebonding actualized by 2D single‐layer photocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号