首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 438 毫秒
1.
The poor stability of perovskite light-emitting diodes (PeLEDs) is a key bottleneck that hinders commercialization of this technology. Here, the degradation process of formamidinium lead iodide (FAPbI3)-based PeLEDs is carefully investigated and the device stability is improved through binary-alkalication incorporation. Using time-of-flight secondary-ion mass spectrometry, it is found that the degradation of FAPbI3-based PeLEDs during operation is directly associated with ion migration, and incorporation of binary alkali cations, i.e., Cs+ and Rb+, in FAPbI3 can suppress ion migration and significantly enhance the lifetime of PeLEDs. Combining experimental and theoretical approaches, it is further revealed that Cs+ and Rb+ ions stabilize the perovskite films by locating at different lattice positions, with Cs+ ions present relatively uniformly throughout the bulk perovskite, while Rb+ ions are found preferentially on the surface and grain boundaries. Further chemical bonding analysis shows that both Cs+ and Rb+ ions raise the net atomic charge of the surrounding I anions, leading to stronger Coulomb interactions between the cations and the inorganic framework. As a result, the Cs+–Rb+-incorporated PeLEDs exhibit an external quantum efficiency of 15.84%, the highest among alkali cation-incorporated FAPbI3 devices. More importantly, the PeLEDs show significantly enhanced operation stability, achieving a half-lifetime over 3600 min.  相似文献   

2.
Efficiencies >20% are obtained from the perovskite solar cells (PSCs) employing Cs+ and Rb+ based perovskite compositions; therefore, it is important to understand the effect of these inorganic cations specifically Rb+ on the properties of perovskite structures. Here the influence of Cs+ and Rb+ is elucidated on the structural, morphological, and photophysical properties of perovskite structures and the photovoltaic performances of resulting PSCs. Structural, photoluminescence (PL), and external quantum efficiency studies establish the incorporation of Cs+ (x < 10%) but amply rule out the possibility of Rb‐incorporation into the MAPbI3 (MA = CH3NH3 +) lattice. Moreover, morphological studies and time‐resolved PL show that both Cs+ and Rb+ detrimentally affect the surface coverage of MAPbI3 layers and charge‐carrier dynamics, respectively, by influencing nucleation density and by inducing nonradiative recombination. In addition, differential scanning calorimetry shows that the transition from orthorhombic to tetragonal phase occurring around 160 K requires more thermal energy for the Cs‐containing MAPbI3 systems compared to the pristine MAPbI3. Investigation including mixed halide (I/Br) and mixed cation A‐cation based compositions further confirms the absence of Rb+ from the 3D‐perovskite lattice. The fundamental insights gained through this work will be of great significance to further understand highly promising perovskite compositions.  相似文献   

3.
Semiconducting lead triiodide perovskites (A PbI3) have shown remarkable performance in applications including photovoltaics and electroluminescence. Despite many theoretical possibilities for A + in A PbI3, the current experimental knowledge is largely limited to two of these materials: methylammonium (MA+) and formamidinium (FA+) lead triiodides, neither of which adopts the ideal, cubic perovskite structure at room temperature. Here, a volume‐based criterion is proposed for cubic A PbI3 to be stable, and two perovskite materials MA1?x EAx PbI3 (MEPI, EA+ = ethylammonium) and MA1?y DMAy PbI3 (MDPI, DMA+ = dimethylammonium) are introduced. Powder and single‐crystal X‐ray diffraction (XRD) results reveal that MEPI and MDPI are solid solutions possessing the cubic perovskite structure, and the EA+ and DMA+ cations play similar roles in the symmetrization of the crystal lattice of MAPbI3. Single crystals of MEPI and MDPI are grown and made into plates of a range of thicknesses, and then into metal–perovskite photodiodes. These devices exhibit tripled diffusion lengths and about tenfold enhancement in stability against moisture, both relative to the current benchmark MAPbI3. In this study, the systematic approach to materials design and device fabrication greatly expands the candidate pool of perovskite semiconductors, and paves the way for high‐performance, single‐crystal perovskite devices including solar cells and light emitters.  相似文献   

4.
The fast development of electrochemical energy storage devices necessitates rational design of the high‐performance electrode materials and systematic and deep understanding of the intrinsic energy storage processes. Herein, the preintercalation general strategy of alkali ions (A = Li+, Na+, K+) into titanium dioxide (A‐TO, LTO, NTO, KTO) is proposed to improve the structural stability of anode materials for sodium and lithium storage. The different optimization effects of preintercalated alkali ions on electrochemical properties are studied systematically. Impressively, the three electrode materials manifest totally different capacities and capacity retention. The efficiency of the energy storage process is affected not only by the distinctive structure but also by the suitable interlayer spacing of Ti‐O, as well as by the interaction effect between the host Ti‐O layer and alien cations with proper size, demonstrating the pivotal role of the sodium ions. The greatly enhanced electrochemical performance confirms the importance of rational engineering and synthesis of advanced electrode materials with the preintercalation of proper alkali cations.  相似文献   

5.
The exploration of materials with reversible and stable electrochemical performance is crucial in energy storage, which can (de) intercalate all the alkali‐metal ions (Li+, Na+, and K+). Although transition‐metal chalcogenides are investigated continually, the design and controllable preparation of hierarchical nanostructure and subtle composite withstable properties are still great challenges. Herein, component‐optimal Co0.85Se1?xSx nanoparticles are fabricated by in situ sulfidization of metal organic framework, which are wrapped by the S‐doped graphene, constructing a hollow polyhedron framework with double carbon shells (CoSSe@C/G). Benefiting from the synergistic effect of composition regulation and architecture design by S‐substitution, the electrochemical kinetic is enhanced by the boosted electrochemistry‐active sites, and the volume variation is mitigated by the designed structure, resulting in the advanced alkali‐ion storage performance. Thus, it delivers an outstanding reversible capacity of 636.2 mAh g?1 at 2 A g?1 after 1400 cycles for Li‐ion batteries. Remarkably, satisfactory initial charge capacities of 548.1 and 532.9 mAh g?1 at 0.1 A g?1 can be obtained for Na‐ion and K‐ion batteries, respectively. The prominent performance combined with the theory calculation confirms that the synergistic strategy can improve the alkali‐ion transportation and structure stability, providing an instructive guide for designing high‐performance anode materials for universal alkali‐ion storage.  相似文献   

6.
Minimization of defects and ion migration in organic–inorganic lead halide perovskite films is desirable for obtaining photovoltaic devices with high power conversion efficiency (PCE) and long‐term stability. However, achieving this target is still a challenge due to the lack of efficient multifunctional passivators. Herein, to address this issue, n‐type goethite (FeOOH) quantum dots (QDs) are introduced into the perovskite light‐absorption layer for achieving efficient and stable perovskite solar cells (PSCs). It is found that the iron, oxygen, and hydroxyl of FeOOH QDs can interact with iodine, lead, and methylamine, respectively. As a result, the crystallization kinetics process can be retarded, thereby resulting in high quality perovskite films with large grain size. Meanwhile, the trap states of perovskite can be effectively passivated via interaction with the under‐coordinated metal (Pb) cations, halide (I) anions on the perovskite crystal surface. Consequently, the PSCs with FeOOH QDs achieve a high efficiency close to 20% with negligible hysteresis. Most strikingly, the long‐term stability of PSCs is significantly enhanced. Furthermore, compared with the CH3NH3PbI3‐based device, a higher PCE of 21.0% is achieved for the device assembled with a Cs0.05FA0.81MA0.14PbBr0.45I2.55 perovskite layer.  相似文献   

7.
Mixed‐halide wide‐bandgap perovskites are key components for the development of high‐efficiency tandem structured devices. However, mixed‐halide perovskites usually suffer from phase‐impurity and high defect density issues, where the causes are still unclear. By using in situ photoluminescence (PL) spectroscopy, it is found that in methylammonium (MA+)‐based mixed‐halide perovskites, MAPb(I0.6Br0.4)3, the halide composition of the spin‐coated perovskite films is preferentially dominated by the bromide ions (Br?). Additional thermal energy is required to initiate the insertion of iodide ions (I?) to achieve the stoichiometric balance. Notably, by incorporating a small amount of formamidinium ions (FA+) in the precursor solution, it can effectively facilitate the I? coordination in the perovskite framework during the spin‐coating and improve the composition homogeneity of the initial small particles. The aggregation of these homogenous small particles is found to be essential to achieve uniform and high‐crystallinity perovskite film with high Br? content. As a result, high‐quality MA0.9FA0.1Pb(I0.6Br0.4)3 perovskite film with a bandgap (Eg) of 1.81 eV is achieved, along with an encouraging power‐conversion‐efficiency of 17.1% and open‐circuit voltage (Voc) of 1.21 V. This work also demonstrates the in situ PL can provide a direct observation of the dynamic of ion coordination during the perovskite crystallization.  相似文献   

8.
A bifunctional conjugated organic molecule 4‐(aminomethyl) benzoic acid hydroiodide (AB) is designed and employed as an organic cation in organic–inorganic halide perovskite materials. Compared with the monofunctional cation benzylamine hydroiodide (BA) and the nonconjugated bifunctional organic molecule 5‐ammonium valeric acid, devices based on AB‐MAPbI3 show a good stability and a superior power conversion efficiency of 15.6% with a short‐circuit current of 23.4 mA cm?2, an open‐circuit voltage of 0.94 V, and a fill factor of 0.71. The bifunctional conjugated cation not only benefits the growth of perovskite crystals in the mesoporous network, but also facilitates the charge transport. This investigation helps explore new approaches to rational design of novel organic cations for perovskite materials.  相似文献   

9.
Lead halide perovskites have emerged as promising semiconducting materials for different applications owing to their superior optoelectronic properties. Although the community holds different views toward the toxic lead in these high‐performance perovskites, it is certainly preferred to replace lead with nontoxic, or at least less‐toxic, elements while maintaining the superior properties. Here, the design rules for lead‐free perovskite materials with structural dimensions from 3D to 0D are presented. Recent progress in lead‐free halide perovskites is reviewed, and the relationships between the structures and fundamental properties are summarized, including optical, electric, and magnetic‐related properties. 3D perovskites, especially A2B+B3+X6‐type double perovskites, demonstrate very promising optoelectronic prospects, while low‐dimensional perovskites show rich structural diversity, resulting in abundant properties for optical, electric, magnetic, and multifunctional applications. Furthermore, based on these structure–property relationships, strategies for multifunctional perovskite design are proposed. The challenges and future directions of lead‐free perovskite applications are also highlighted, with emphasis on materials development and device fabrication. The research on lead‐free halide perovskites at Linköping University has benefited from inspirational discussions with Prof. Olle Inganäs.  相似文献   

10.
The direct intercalation of Li+, Na+, K+ and their crown ether complexes has been observed when FeOCl reacts with the respective methoxide salts of these ions. The lattice parameters of the compounds formed are reported. The intercalation process is interpreted in terms of oxidation of the methoxide ion accompanied by a partial reduction of the Fe(III) in the FeOCl, with the intercalation of the alkali metal ion in the lattice for charge compensaion.  相似文献   

11.
High‐temperature vapor phase epitaxy (VPE) has been proved ubiquitously powerful in enabling high‐performance electro‐optic devices in III–V semiconductor field. A typical example is the successful growth of p‐type GaN by VPE for blue light‐emitting diodes. VPE excels as it controls film defects such as point/interface defects and grain boundary, thanks to its high‐temperature processing condition and controllable deposition rate. For the first time, single‐crystalline high‐temperature VPE halide perovskite thin film has been demonstrated—a unique platform on unveiling previously uncovered carrier dynamics in inorganic halide perovskites. Toward wafer‐scale epitaxial and grain boundary‐free film is grown with alkali halides as substrates. It is shown the metal alkali halides could be used as universal substrates for VPE growth of perovskite due to their similar material chemistry and lattice constant. With VPE, hot photoluminescence and nanosecond photo‐Dember effect are revealed in inorganic halide perovskite. These two phenomena suggest that inorganic halide perovskite could be as compelling as its organic–inorganic counterpart regarding optoelectronic properties and help explain the long carrier lifetime in halide perovskite. The findings suggest a new avenue on developing high‐quality large‐scale single‐crystalline halide perovskite films requiring precise control of defects and morphology.  相似文献   

12.
The poor UV, thermal, and interfacial stability of perovskite solar cells (PSCs) makes it highly challenging for their technological application, and has drawn increasing attention to resolving the above issues. In nature, plants generally sustain long exposure to UV illumination without damage, which is attributed to the presence of the organic materials acting as sunscreens. Inspired by the natural phenomenon, a natural plant sunscreen, sinapoyl malate, an ester derivative of sinapic acid, is employed to modify the surface of electron transport materials (ETMs). The interfacial modification successfully resolved the UV stability and reduced the poor interfacial contact between ETM and perovskite. The best efficiency of fabricated PSCs is up to 19.6%. Furthermore, we employed a mixture of Co(II) and Co(III)‐based porphyrin compounds containing the excellent Co(II)/Co(III) redox couple to substitute the commonly used hole transport material, 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9‐spiro‐bifluorene (spiro‐OMeTAD), to resolve the thermal degradation of PSCs noted at and above 80 °C that originates from ion diffusion of I? and CH3NH3+ (MA+) ions from perovskite into spiro‐OMeTAD. Finally, the stable PSCs with the best efficiency up to 20.5% are successfully fabricated.  相似文献   

13.
Perovskite solar cells (PSCs) with n-i-p structures often utilize an organic 2,2′,7,7′-tetrakis (N, N-di-p-methoxyphenyl-amine) 9,9′-spirobifluorene (spiro-OMeTAD) along with additives of lithium bis(trifluoromethanesulfonyl)imide salt (LiTFSI) and tert-butylpyridine as the hole transporting layer (HTL). However, the HTL lacks stability in ambient air, and numerous defects are often present on the perovskite surface, which is not conducive to a stable and efficient PSC. Therefore, constructive strategies that simultaneously stabilize spiro-OMeTAD and passivate the perovskite surface are required. In this work, it is demonstrated that a novel ionic liquid of dimethylammonium bis(trifluoromethanesulfonyl)imide (DMATFSI) could act as a bifunctional HTL modulator in n-i-p PSCs. The addition of DMATFSI into spiro-OMeTAD can effectively stabilize the oxidized spiro-OMeTAD+ cation radicals through the formation of spiro-OMeTAD+TFSI because of the excellent charge delocalization of the conjugated CF3SO2 moiety within TFSI. In addition, DMA+ cations could move toward the perovskite from the HTL, resulting in the passivation of defects at the perovskite surface. Accordingly, a power conversion efficiency of 23.22% is achieved for PSCs with DMATFSI and LiTFSI co-doped spiro-OMeTAD. Moreover, benefiting from the improved ion migration barrier and hydrophobicity of the HTL, still retained nearly 80% of their initial power conversion efficiency after 36 days of exposure to ambient air.  相似文献   

14.
In hybrid organic–inorganic lead halide perovskite solar cells, the energy loss is strongly associated with nonradiative recombination in the perovskite layer and at the cell interfaces. Here, a simple but effective strategy is developed to improve the cell performance of perovskite solar cells via the combination of internal doping by a ferroelectric polymer and external control by an electric field. A group of polarized ferroelectric (PFE) polymers are doped into the methylammonium lead iodide (MAPbI3) layer and/or inserted between the perovskite and the hole‐transporting layers to enhance the build‐in field (BIF), improve the crystallization of MAPbI3, and regulate the nonradiative recombination in perovskite solar cells. The PFE polymer‐doped MAPbI3 shows an orderly arrangement of MA+ cations, resulting in a preferred growth orientation of polycrystalline perovskite films with reduced trap states. In addition, the BIF is enhanced by the widened depletion region in the device. As an interfacial dipole layer, the PFE polymer plays a critical role in increasing the BIF. This combined effect leads to a substantial reduction in voltage loss of 0.14 V due to the efficient suppression of nonradiative recombination. Consequently, the resulting perovskite solar cells present a power conversion efficiency of 21.38% with a high open‐circuit voltage of 1.14 V.  相似文献   

15.
Despite the high specific capacity and low redox potential of alkali metals, their practical application as anodes is still limited by the inherent dendrite‐growth problem. The fusible sodium–potassium (Na–K) liquid metal alloy is an alternative that detours this drawback, but the fundamental understanding of charge transport in this binary electroactive alloy anode remains elusive. Here, comprehensive characterization, accompanied with density function theory (DFT) calculations, jointly expound the Na–K anode‐based battery working mechanism. With the organic cathode sodium rhodizonate dibasic (SR) that has negligible selectivity toward cations, the charge carrier is screened by electrolytes due to the selective ionic pathways in the solid electrolyte interphase (SEI). Stable cycling for this Na–K/SR battery is achieved with capacity retention per cycle to be 99.88% as a sodium‐ion battery (SIB) and 99.70% as a potassium‐ion battery (PIB) for over 100 cycles. Benefitting from the flexibility of the liquid metal and the specially designed carbon nanofiber (CNF)/SR layer‐by‐layer cathode, a flexible dendrite‐free alkali‐ion battery is achieved with an ultrahigh areal capacity of 2.1 mAh cm?2. Computation‐guided materials selection, characterization‐supported mechanistic understanding, and self‐validating battery performance collectively promise the prospect of a high‐performance, dendrite‐free, and versatile organic‐based liquid metal battery.  相似文献   

16.
Indirect absorption extended below the direct transition edge and increase in carrier lifetime derived from Rashba spin–orbit coupling may advance the optoelectronic applications of metal halide perovskites. Spin-orbit coupling in halide perovskites is due to the presence of heavy elements in their structure. However, when these materials lack an inversion symmetry, for example by the application of strain, spin–orbit coupling becomes odd in the electron’s momentum giving rise to a splitting in the electronic energy bands. Here we report on the observation of a large Rashba splitting of 117 meV at room temperature, as predicted by relativistic first-principles calculations, in halide perovskite single crystals through a facile compositional engineering approach. Partial substitution of organic cations by rubidium in single crystals induces significant indirect absorption and dual peak photoluminescence as a result of a large Rashba splitting. We measured circularly polarized photoluminescence and magneto-photoluminescence in perovskite films printed by single crystals as well as magneto-electroluminescence and magneto-photocurrent in spin-LEDs based on perovskite single crystals. They indicated significant spin-momentum locking due to the large Rashba effect. A hybrid perovskite single crystal photodetector achieved record figures of merit, including detectivity of more than 1.3 × 1018 Jones which represents a three orders of magnitude improvement compared to the to date record. These findings show that facile compositional engineering of perovskite single crystals holds great promise for further advancing the optoelectronic properties of existing materials.  相似文献   

17.
Migration of ions can lead to photoinduced phase separation, degradation, and current–voltage hysteresis in perovskite solar cells (PSCs), and has become a serious drawback for the organic–inorganic hybrid perovskite materials (OIPs). Here, the inhibition of ion migration is realized by the supramolecular cation–π interaction between aromatic rubrene and organic cations in OIPs. The energy of the cation–π interaction between rubrene and perovskite is found to be as strong as 1.5 eV, which is enough to immobilize the organic cations in OIPs; this will thus will lead to the obvious reduction of defects in perovskite films and outstanding stability in devices. By employing the cation‐immobilized OIPs to fabricate perovskite solar cells (PSCs), a champion efficiency of 20.86% and certified efficiency of 20.80% with negligible hysteresis are acquired. In addition, the long‐term stability of cation‐immobilized PSCs is improved definitely (98% of the initial efficiency after 720 h operation), which is assigned to the inhibition of ionic diffusions in cation‐immobilized OIPs. This cation–π interaction between cations and the supramolecular π system enhances the stability and the performance of PSCs efficiently and would be a potential universal approach to get the more stable perovskite devices.  相似文献   

18.
Complexation of the Tc(CO)3(H2O)3 + ion with halide (F-, Cl-, Br-, I-) and thiocyanate ions in aqueous solutions was studied by 9 9Tc NMR spectroscopy. The stability constants of the mono-, di-, and tri- substituted complexes were calculated. The stability of halide (Cl-, Br-, I-) complexes grows as the ionic radius of the halogen increases and its electronegativity decreases. For halide complexes of similar composi- tion, the 9 9Tc chemical shift correlates with the stability of the complexes. The fluoride ion, most probably, does not coordinate with the Tc(CO)3 + ion, in contrast to its close analog, hydroxide ion. Among the ligands studied, the pseudohalide anion NCS- forms the most stable complexes with the Tc(CO)3 + ion.  相似文献   

19.
Self‐healing, where a modification in some parameter is reversed with time without any external intervention, is one of the particularly interesting properties of halide perovskites. While there are a number of studies showing such self‐healing in perovskites, they all are carried out on thin films, where the interface between the perovskite and another phase (including the ambient) is often a dominating and interfering factor in the process. Here, self‐healing in perovskite (methylammonium, formamidinium, and cesium lead bromide (MAPbBr3, FAPbBr3, and CsPbBr3)) single crystals is reported, using two‐photon microscopy to create damage (photobleaching) ≈110 µm inside the crystals and to monitor the recovery of photoluminescence after the damage. Self‐healing occurs in all three perovskites with FAPbBr3 the fastest (≈1 h) and CsPbBr3 the slowest (tens of hours) to recover. This behavior, different from surface‐dominated stability trends, is typical of the bulk and is strongly dependent on the localization of degradation products not far from the site of the damage. The mechanism of self‐healing is discussed with the possible participation of polybromide species. It provides a closed chemical cycle and does not necessarily involve defect or ion migration phenomena that are often proposed to explain reversible phenomena in halide perovskites.  相似文献   

20.
Metal halide perovskite materials have attracted great attention owing to their fascinating optoelectronic characteristics and low cost fabrication via facile solution processing. One of the potential applications of these materials is to employ them as color‐conversion layers (CCLs) for visible blue light to achieve full‐color displays. However, obtaining thick perovskite films to realize complete color conversion is a key challenge. Here, the fabrication of micrometer‐level thick CsPbBr3 perovskite films is presented through a facile vacuum drying approach. An efficient green photoconversion is realized in a 3.8 µm thick film from blue light @ 463 nm. For a back luminance of 1000 cd m?2, the brightness of the resulting green emission can reach as high as 200 cd m?2. Furthermore, only ≈2% of decay in brightness is observed when the films are tested after 18 days of exposure to ambient environment. In addition, a potential design is also proposed for full‐color displays with perovskite materials incorporated as CCLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号