首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Wide‐bandgap (WBG) formamidinium–cesium (FA‐Cs) lead iodide–bromide mixed perovskites are promising materials for front cells well‐matched with crystalline silicon to form tandem solar cells. They offer avenues to augment the performance of widely deployed commercial solar cells. However, phase instability, high open‐circuit voltage (Voc) deficit, and large hysteresis limit this otherwise promising technology. Here, by controlling the crystallization of FA‐Cs WBG perovskite with the aid of a formamide cosolvent, light‐induced phase segregation and hysteresis in perovskite solar cells are suppressed. The highly polar solvent additive formamide induces direct formation of the black perovskite phase, bypassing the yellow phases, thereby reducing the density of defects in films. As a result, the optimized WBG perovskite solar cells (PSCs) (Eg ≈ 1.75 eV) exhibit a high Voc of 1.23 V, reduced hysteresis, and a power conversion efficiency (PCE) of 17.8%. A PCE of 15.2% on 1.1 cm2 solar cells, the highest among the reported efficiencies for large‐area PSCs having this bandgap is also demonstrated. These perovskites show excellent phase stability and thermal stability, as well as long‐term air stability. They maintain ≈95% of their initial PCE after 1300 h of storage in dry air without encapsulation.  相似文献   

2.
Low temperature solution processed planar‐structure perovskite solar cells gain great attention recently, while their power conversions are still lower than that of high temperature mesoporous counterpart. Previous reports are mainly focused on perovskite morphology control and interface engineering to improve performance. Here, this study systematically investigates the effect of precise stoichiometry, especially the PbI2 contents on device performance including efficiency, hysteresis and stability. This study finds that a moderate residual of PbI2 can deliver stable and high efficiency of solar cells without hysteresis, while too much residual PbI2 will lead to serious hysteresis and poor transit stability. Solar cells with the efficiencies of 21.6% in small size (0.0737 cm2) and 20.1% in large size (1 cm2) with moderate residual PbI2 in perovskite layer are obtained. The certificated efficiency for small size shows the efficiency of 20.9%, which is the highest efficiency ever recorded in planar‐structure perovskite solar cells, showing the planar‐structure perovskite solar cells are very promising.  相似文献   

3.
Perovskite solar cells have received great attention because of their rapid progress in efficiency, with a present certified highest efficiency of 23.3%. Achieving both high efficiency and high thermal stability is one of the biggest challenges currently limiting perovskite solar cells because devices displaying stability at high temperature frequently suffer from a marked decrease of efficiency. In this report, the relationship between perovskite composition and device thermal stability is examined. It is revealed that Rb can suppress the growth of PbI2 even under PbI2‐rich conditions and decreasing the Br ratio in the perovskite absorber layer can prevent the generation of unwanted RbBr‐based aggregations. The optimized device achieved by engineering perovskite composition exhibits 92% power conversion efficiency retention in a stress test conducted at 85 °C/85% relative humidity (RH) according to an international standard (IEC 61215) while exceeding 20% power conversion efficiency (certified efficiency of 20.8% at 1 cm2). These results reveal the great potential for the practical use of perovskite solar cells in the near future.  相似文献   

4.
The stability of a tin‐based perovskite solar cell is a major challenge. Here, hybrid tin‐based perovskite solar cells in a new series that incorporate a nonpolar organic cation, guanidinium (GA+), in varied proportions into the formamidinium (FA+) tin triiodide perovskite (FASnI3) crystal structure in the presence of 1% ethylenediammonium diiodide (EDAI2) as an additive, are reported. The device performance is optimized at a precursor ratio (GAI:FAI) of 20:80 to attain a power conversion efficiency (PCE) of 8.5% when prepared freshly; the efficiencies continuously increase to attain a record PCE of 9.6% after storage in a glove‐box environment for 2000 h. The hybrid perovskite works stably under continuous 1 sun illumination for 1 h and storage in air for 6 days without encapsulation. Such a tin‐based perovskite passes all harsh standard tests, and the efficiency of a fresh device, 8.3%, is certified. The great performance and stability of the device reported herein attains a new milestone for lead‐free perovskite solar cells on a path toward commercial development.  相似文献   

5.
Developing low‐cost photovoltaic absorbers that can harvest the short‐wave infrared (SWIR) part of the solar spectrum, which remains unharnessed by current Si‐based and perovskite photovoltaic technologies, is a prerequisite for making high‐efficiency, low‐cost tandem solar cells. Here, infrared PbS colloidal quantum dot (CQD) solar cells employing a hybrid inorganic–organic ligand exchange process that results in an external quantum efficiency of 80% at 1.35 µm are reported, leading to a short‐circuit current density of 34 mA cm?2 and a power conversion efficiency (PCE) up to 7.9%, which is a current record for SWIR CQD solar cells. When this cell is placed at the back of an MAPbI3 perovskite film, it delivers an extra 3.3% PCE by harnessing light beyond 750 nm.  相似文献   

6.
Although the hot‐casting (HC) technique is prevalent in developing preferred crystal orientation of quasi‐2D perovskite films, the difficulty of accurately controlling the thermal homogeneity of substrate is unfavorable for the reproducibility of device fabrication. Herein, a facile and effective non‐preheating (NP) film‐casting method is proposed to realize highly oriented quasi‐2D perovskite films by replacing the butylammonium (BA+) spacer partially with methylammonium (MA+) cation as (BA)2?x(MA)3+xPb4I13 (x = 0, 0.2, 0.4, and 0.6). At the optimal x‐value of 0.4, the resultant quasi‐2D perovskite film possesses highly orientated crystals, associated with a dense morphology and uniform grain‐size distribution. Consequently, the (BA)1.6(MA)3.4Pb4I13‐based solar cells yield champion efficiencies of 15.44% with NP processing and 16.29% with HC processing, respectively. As expected, the HC‐processed device shows a poor performance reproducibility compared with that of the NP film‐casting method. Moreover, the unsealed device (x = 0.4) displays a better moisture stability with respect to the x = 0 stored in a 65% ± 5% relative humility chamber.  相似文献   

7.
The carrier concentration of the electron‐selective layer (ESL) and hole‐selective layer can significantly affect the performance of organic–inorganic lead halide perovskite solar cells (PSCs). Herein, a facile yet effective two‐step method, i.e., room‐temperature colloidal synthesis and low‐temperature removal of additive (thiourea), to control the carrier concentration of SnO2 quantum dot (QD) ESLs to achieve high‐performance PSCs is developed. By optimizing the electron density of SnO2 QD ESLs, a champion stabilized power output of 20.32% for the planar PSCs using triple cation perovskite absorber and 19.73% for those using CH3NH3PbI3 absorber is achieved. The superior uniformity of low‐temperature processed SnO2 QD ESLs also enables the fabrication of ≈19% efficiency PSCs with an aperture area of 1.0 cm2 and 16.97% efficiency flexible device. The results demonstrate the promise of carrier‐concentration‐controlled SnO2 QD ESLs for fabricating stable, efficient, reproducible, large‐scale, and flexible planar PSCs.  相似文献   

8.
Large‐scale high‐quality perovskite thin films are crucial to produce high‐performance perovskite solar cells. However, for perovskite films fabricated by solvent‐rich processes, film uniformity can be prevented by convection during thermal evaporation of the solvent. Here, a scalable low‐temperature soft‐cover deposition (LT‐SCD) method is presented, where the thermal convection‐induced defects in perovskite films are eliminated through a strategy of surface tension relaxation. Compact, homogeneous, and convection‐induced‐defects‐free perovskite films are obtained on an area of 12 cm2, which enables a power conversion efficiency (PCE) of 15.5% on a solar cell with an area of 5 cm2. This is the highest efficiency at this large cell area. A PCE of 15.3% is also obtained on a flexible perovskite solar cell deposited on the polyethylene terephthalate substrate owing to the advantage of presented low‐temperature processing. Hence, the present LT‐SCD technology provides a new non‐spin‐coating route to the deposition of large‐area uniform perovskite films for both rigid and flexible perovskite devices.  相似文献   

9.
Molecularly engineered novel dopant‐free hole‐transporting materials for perovskite solar cells (PSCs) combined with mixed‐perovskite (FAPbI3)0.85(MAPbBr3)0.15 (MA: CH3NH3+, FA: NH=CHNH3+) that exhibit an excellent power conversion efficiency of 18.9% under AM 1.5 conditions are investigated. The mobilities of FA‐CN, and TPA‐CN are determined to be 1.2 × 10?4 cm2 V?1 s?1 and 1.1 × 10?4 cm2 V?1 s?1, respectively. Exceptional stability up to 500 h is measured with the PSC based on FA‐CN. Additionally, it is found that the maximum power output collected after 1300 h remained 65% of its initial value. This opens up new avenue for efficient and stable PSCs exploring new materials as alternatives to Spiro‐OMeTAD.  相似文献   

10.
Organic–inorganic perovskites with intriguing optical and electrical properties have attracted significant research interests due to their excellent performance in optoelectronic devices. Recent efforts on preparing uniform and large‐grain polycrystalline perovskite films have led to enhanced carrier lifetime up to several microseconds. However, the mobility and trap densities of polycrystalline perovskite films are still significantly behind their single‐crystal counterparts. Here, a facile topotactic‐oriented attachment (TOA) process to grow highly oriented perovskite films, featuring strong uniaxial‐crystallographic texture, micrometer‐grain morphology, high crystallinity, low trap density (≈4 × 1014 cm?3), and unprecedented 9 GHz charge‐carrier mobility (71 cm2 V?1 s?1), is demonstrated. TOA‐perovskite‐based n‐i‐p planar solar cells show minimal discrepancies between stabilized efficiency (19.0%) and reverse‐scan efficiency (19.7%). The TOA process is also applicable for growing other state‐of‐the‐art perovskite alloys, including triple‐cation and mixed‐halide perovskites.  相似文献   

11.
Low‐dimensional Ruddlesden–Popper perovskites (RPPs) exhibit excellent stability in comparison with 3D perovskites; however, the relatively low power conversion efficiency (PCE) limits their future application. In this work, a new fluorine‐substituted phenylethlammonium (PEA) cation is developed as a spacer to fabricate quasi‐2D (4FPEA)2(MA)4Pb5I16 (n = 5) perovskite solar cells. The champion device exhibits a remarkable PCE of 17.3% with a Jsc of 19.00 mA cm?2, a Voc of 1.16 V, and a fill factor (FF) of 79%, which are among the best results for low‐dimensional RPP solar cells (n ≤ 5). The enhanced device performance can be attributed as follows: first, the strong dipole field induced by the 4‐fluoro‐phenethylammonium (4FPEA) organic spacer facilitates charge dissociation. Second, fluorinated RPP crystals preferentially grow along the vertical direction, and form a phase distribution with the increasing n number from bottom to the top surface, resulting in efficient charge transport. Third, 4FPEA‐based RPP films exhibit higher film crystallinity, enlarged grain size, and reduced trap‐state density. Lastly, the unsealed fluorinated RPP devices demonstrate superior humidity and thermal stability. Therefore, the fluorination of the long‐chain organic cations provides a feasible approach for simultaneously improving the efficiency and stability of low‐dimensional RPP solar cells.  相似文献   

12.
Perovskite solar cells increasingly feature mixed‐halide mixed‐cation compounds (FA1?x?yMAxCsyPbI3?zBrz) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineering leads to a systematic widening of the anti‐solvent processing window for the fabrication of high‐quality films and efficient solar cells. This window widens from seconds, in the case of single cation/halide systems (e.g., MAPbI3, FAPbI3, and FAPbBr3), to several minutes for mixed systems. In situ X‐ray diffraction studies reveal that the processing window is closely related to the crystallization of the disordered sol–gel and to the number of crystalline byproducts; the processing window therefore depends directly on the precise cation/halide composition. Moreover, anti‐solvent dripping is shown to promote the desired perovskite phase with careful formulation. The processing window of perovskite solar cells, as defined by the latest time the anti‐solvent drip yields efficient solar cells, broadened with the increasing complexity of cation/halide content. This behavior is ascribed to kinetic stabilization of sol–gel state through cation/halide engineering. This provides guidelines for designing new formulations, aimed at formation of the perovskite phase, ultimately resulting in high‐efficiency perovskite solar cells produced with ease and with high reproducibility.  相似文献   

13.
A simple, low‐cost, large area, and continuous scalable coating method is proposed for the fabrication of hybrid organic–inorganic perovskite solar cells. A megasonic spray‐coating method utilizing a 1.7 MHz megasonic nebulizer that could fabricate reproducible large‐area planar efficient perovskite films is developed. The coating method fabricates uniform large‐area perovskite film with large‐sized grain since smaller and narrower sized mist droplets than those generated by existing ultrasonic spray methods could be generated by megasonic spraying. The volume flow rate of the CH3NH3PbI3 precursor solution and the reaction temperature are controlled, to obtain a high quality perovskite active layer. The devices reach a maximum efficiency of 16.9%, with an average efficiency of 16.4% from 21 samples. The applicability of megasonic spray coating to the fabrication of large‐area solar cells (1 cm2), with a power conversion efficiency of 14.2%, is also demonstrated. This is a record high efficiency for large‐area perovskite solar cells fabricated by continuous spray coating.  相似文献   

14.
All‐inorganic CsPbIBr2 perovskite has recently received growing attention due to its balanced band gap and excellent environmental stability. However, the requirement of high‐temperature processing limits its application in flexible devices. Herein, a low‐temperature seed‐assisted growth (SAG) method for high‐quality CsPbIBr2 perovskite films through reducing the crystallization temperature by introducing methylammonium halides (MAX, X = I, Br, Cl) is demonstrated. The mechanism is attributed to MA cation based perovskite seeds, which act as nuclei lowering the formation energy of CsPbIBr2 during the annealing treatment. It is found that methylammonium bromide treated perovskite (Pvsk‐Br) film fabricated at low temperature (150 °C) shows micrometer‐sized grains and superior charge dynamic properties, delivering a device with an efficiency of 10.47%. Furthermore, an efficiency of 11.1% is achieved for a device based on high‐temperature (250 °C) processed Pvsk‐Br film via the SAG method, which presents the highest reported efficiency for inorganic CsPbIBr2 solar cells thus far.  相似文献   

15.
All‐inorganic perovskite solar cells have developed rapidly in the last two years due to their excellent thermal and light stability. However, low efficiency and moisture instability limit their future commercial application. The mixed‐halide inorganic CsPbI2Br perovskite with a suitable bandgap offers a good balance between phase stability and light harvesting. However, high defect density and low carrier lifetime in CsPbI2Br perovskites limit the open‐circuit voltage (Voc < 1.2 V), short‐circuit current density (Jsc < 15 mA cm?2), and fill factor (FF < 75%) of CsPbI2Br perovskite solar cells, resulting in an efficiency below 14%. For the first time, a CsPbI2Br perovskite is doped by Eu(Ac)3 to obtain a high‐quality inorganic perovskite film with a low defect density and long carrier lifetime. A high efficiency of 15.25% (average efficiency of 14.88%), a respectable Voc of 1.25 V, a reasonable Jsc of 15.44 mA cm?2, and a high FF of 79.00% are realized for CsPbI2Br solar cells. Moreover, the CsPbI2Br solar cells with Eu(Ac)3 doping demonstrate excellent air stability and maintain more than 80% of their initial power conversion efficiency (PCE) values after aging in air (relative humidity: 35–40%) for 30 days.  相似文献   

16.
Sb1?xBixSI, an isostructural material with the well‐known quasi‐1D SbSI, possesses good semiconductive and ferroelectric properties but is not applied in solar cells. Herein, solar cells based on alloyed Sb0.67Bi0.33SI (ASBSI) as a light harvester are fabricated. ASBSI is prepared through the reaction of bismuth triiodide in N,N‐dimethylformamide solution with an antimony trisulfide film deposited on a mesoporous (mp)‐TiO2 electrode via chemical bath deposition at 250 °C under an argon or nitrogen atmosphere; the alloy exhibits a promising bandgap (1.62 eV). The best performing cell fabricated with poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′]dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadiazole)] as the hole‐transporting layer shows 4.07% in a power conversion efficiency (PCE) under the standard illumination conditions of 100 mW cm?2. The unencapsulated cells exhibit good comprehensive stability with retention of 92% of zjr initial PCE under ambient conditions of 60% relative humidity over 360 h, 93% after 1 sun illumination for 1254 min, and 92% after storage at 85 °C in air for 360 h.  相似文献   

17.
The fabrication of high‐quality perovskite film highly relies on chemical composition and the synthesis method of perovskite. So far, sequentially deposited MA0.03FA0.97Pb(I0.97Br0.03)3 polycrystalline film is adopted to produce high‐performance perovskite solar cells with record power conversion efficiency (PCE). Fewer grain boundaries and incorporation of inorganic cation (e.g., cesium) would further increase device performance via sequential deposition. Here, cesium chloride (CsCl) is introduced into lead iodide (PbI2) precursor solution that beneficially modulates the property of PbI2 film, leading to larger grains with cesium incorporation in the resulting perovskite film. The enlarged crystal grains originate from a slower nucleation process for CsCl‐containing PbI2 film when reacting with formamidine iodide, confirmed by in situ confocal photoluminescence imaging. Photovoltaic devices based on CsCl‐containing PbI2 film demonstrate a higher averaging efficiency of 21.3% than 20.3% of the devices without CsCl additives for reverse scan. More importantly, the device stability is improved by CsCl additives that retain over 90% of their initial PCE value after 4000 min tracking at maximum power point under 1‐sun illumination. This work paves a way to further improve the photovoltaic performance of mixed‐cation‐halide perovskite solar cells via a sequential deposition method.  相似文献   

18.
Recent perovskite solar cell (PSC) advances have pursued strategies for reducing interfacial energetic mismatches to mitigate energy losses, as well as to minimize interfacial and bulk defects and ion vacancies to maximize charge transfer. Here nonconjugated multi‐zwitterionic small‐molecule electrolytes (NSEs) are introduced, which act not only as charge‐extracting layers for barrier‐free charge collection at planar triple cation PSC cathodes but also passivate charged defects at the perovskite bulk/interface via a spontaneous bottom‐up passivation effect. Implementing these synergistic properties affords NSE‐based planar PSCs that deliver a remarkable power conversion efficiency of 21.18% with a maximum VOC = 1.19 V, in combination with suppressed hysteresis and enhanced environmental, thermal, and light‐soaking stability. Thus, this work demonstrates that the bottom‐up, simultaneous interfacial and bulk trap passivation using NSE modifiers is a promising strategy to overcome outstanding issues impeding further PSC advances.  相似文献   

19.
The status and problems of upscaling research on perovskite solar cells, which must be addressed for commercialization efforts to be successful, are investigated. An 804 cm2 perovskite solar module has been reported with 17.9% efficiency, which is significantly lower than the champion perovskite solar cell efficiency of 25.2% reported for a 0.09 cm2 aperture area. For the realization of upscaling high-quality perovskite solar cells, the upscaling and development history of conventional silicon, copper indium gallium sulfur/selenide and CdTe solar cells, which are already commercialized with modules of sizes up to ≈25 000 cm2, are reviewed. GaAs, organic, dye-sensitized solar cells and perovskite/silicon tandem solar cells are also reviewed. The similarities of the operating mechanisms between the various solar cells and the origin of different development pathway are investigated, and the ideal upscaling direction of perovskite solar cells is subsequently proposed. It is believed that lessons learned from the historical analysis of various solar cells provide a fundamental diagnosis of relative and absolute development status of perovskite solar cells. The unique perspective proposed here can pave the way toward the upscaling of perovskite solar cells.  相似文献   

20.
Cesium‐based trihalide perovskites have been demonstrated as promising light absorbers for photovoltaic applications due to their superb composition stability. However, the large energy losses (Eloss) observed in inorganic perovskite solar cells has become a major hindrance impairing the ultimate efficiency. Here, an effective and reproducible method of modifying the interface between a CsPbI2Br absorber and polythiophene hole‐acceptor to minimize the Eloss is reported. It is demonstrated that polythiophene, deposited on the top of CsPbI2Br, can significantly reduce electron‐hole recombination within the perovskite, which is due to the electronic passivation of surface defect states. In addition, the interfacial properties are improved by a simple annealing process, leading to significantly reduced energy disorder in polythiophene and enhanced hole‐injection into the hole‐acceptor. Consequently, one of the highest power conversion efficiency (PCE) of 12.02% from a reverse scan in inorganic mixed‐halide perovskite solar cells is obtained. Modifying the perovskite films with annealing polythiophene enables an open‐circuit voltage (VOC) of up to 1.32 V and Eloss of down to 0.5 eV, which both are the optimal values reported among cesium‐lead mixed‐halide perovskite solar cells to date. This method provides a new route to further improve the efficiency of perovskite solar cells by minimizing the Eloss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号