首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed Nusselt number (Nu) distributions over six fin surfaces are presented for two sets of curved fin channels with twin- and single-flow exits that simulate flow passages in a cylindrical fin array for cooling of electronic chipsets. Each set of curved fin channels shares an identical cross-sectional shape with three different fin length (L)-to-hydraulic diameter (D) ratios of 22.5, 16.2 and 9.8. Influences of L/D ratio and exit condition on local Nu distributions over curve fin surfaces at Reynolds numbers (Re) of 500, 1,000, 1,200, 2,000, 4,000, 6,000, and 8,000 are examined. Spatially averaged Nusselt numbers () for two sets of tested channels are analyzed and compared that unravel the interactive impacts of L/D ratio and Re on heat transfer. In the present Re range, relative ratios between test channels with twin and single exits fall in the ranges of 0.97–1.08, 1.1–1.2, and 1.25–1.3 for L/D ratios of 22.5, 16.2, and 9.8, respectively. Heat transfer correlations for are generated using Re and L/D ratio as determining variables. A set of criteria for determining the optimal L/D ratio that provides the maximum cooling power available from a curve fin surface for the specified cross-sectional shape of curved fin channel are derived to assist the design activities for such cylindrical fin array.  相似文献   

2.
In this communication, the results of numerical calculations of the heat transfer coefficient and temperature distribution along the horizontal single pin fin in still ambient air, as well as the fin efficiency, are presented and compared with classical analytical results in the case of the constant heat transfer coefficient fin theory. The measured temperature distributions along the two low carbon steel pin fins having a length-to-diameter ratio of 35—one covered with the polished nickel and the other painted mat black—agree very well with the numerical results and are higher than the classical results. The analytically calculated fin efficiency does not differ significantly from the results of the numerical calculations if they are compared for the same dimensionless fin parameter in which the heat transfer coefficient is determined for the fin base temperature. More extended numerical calculations showed that beyond the fin parameter of five, the analytical results of the fin efficiency are higher than the numerical results by no more than about 1%. The largest difference between the classical and numerical fin base efficiencies is about 3.5%, and it was observed at a fin parameter of about 1, where the length of the pin fin has the optimal value based on the classical theory.  相似文献   

3.
百叶窗翅片作为换热器主要翅片形式之一,其结构对空气侧流动换热特性有着重要影响。本文总结了近年来国内外在百叶窗翅片结构对空气侧流动换热影响方面的研究,包括翅片间距、翅片高度、翅片厚度、翅片深度、百叶窗间距及开窗角度对空气侧换热系数、压降、流动效率、传热因子和摩擦因子的影响。研究表明:传热因子随开窗角度和翅片深度的增加而增大,随翅片间距的增加而减小;摩擦因子随开窗角度的增大而增大,随百叶窗间距的增大而减小;其中,开窗角度与翅片深度分别是影响空气侧流动和换热的最主要因素。最后,在百叶窗结构的基础上,提出了对翅片表面进行处理以及使用新型翅片结构等途径来进一步强化空气侧流动换热的建议。  相似文献   

4.
Yu Rao  Peng Zhang 《传热工程》2020,41(15-16):1431-1441
Abstract

In order to increase the thermal efficiency, the gas turbines are designed to operate at higher temperature, which requires highly efficient cooling structures for turbine blades. The dimples and ribs are effective surface structures to enhance the convective heat transfer in the gas turbine blade internal cooling. In the present study, a novel hybrid cooling structure with miniature V-shaped ribs and dimples is presented, and the heat transfer and pressure loss characteristics are obtained experimentally. The heat transfer performance of the rib–dimple structures, which include three different rib height-to-hydraulic diameter ratios of 0.017, 0.029 and 0.044 and one dimple configuration with the dimple depth-to-diameter ratio of 0.2, are studied by using the transient liquid crystal thermography technique for turbulent flow in rectangular channels within the Reynolds number range from 10,000 to 60,000. It is found that the miniature V-shaped ribs arranged upstream the dimples can significantly improve the heat transfer performance of the dimples, resulting in a more uniform heat transfer distribution on the surface. The V rib-dimple hybrid structure in the channel shows much higher heat transfer enhancement than the counterparts with only the dimples in the channels.  相似文献   

5.
Heat removal from electronic packages is often assisted with the use of heat sinks whose heat transfer surfaces come in a variety of forms such as cylindrical pins, flat fins, and corrugated sheet. These conventional designs are manufactured by traditional methods such as forging, machining, casting, stamping and bending, or a combination of processes. This article introduces a novel manufacturing technique, selective laser melting (SLM), and demonstrates its ability to fabricate new designs of heat sink that have not previously been considered, primarily due to their geometric complexity. Three novel finned structures have been manufactured and their thermal and fluid flow characteristics have been determined experimentally. The three heat sinks demonstrate selective laser melting's ability to produce fine detail and consist of a staggered elliptical array, an elliptical array where the pins are angled in a direction perpendicular to the flow, and a densely packed diamond array. The novel heat sink designs were compared to a cylindrical pin array manufactured using the SLM process as well as with pin fin data from the literature. The heat sinks produced by the SLM method have been shown to have superior performance to that of the conventional heat sinks. Although the angled elliptical fins transmit similar amounts of heat to the cylindrical pin fins across the range of air flow rates considered, they incur a lower pressure loss. The densely packed diamond array not only transfers 60% more heat than the cylindrical array, but does so with a lower pressure drop across it.  相似文献   

6.
An analysis was carried out to study the efficiency of a straight rectangular fin with a uniform cross-section area when subjected to simultaneous heat and mass transfer mechanisms. The temperature and humidity ratio differences are the driving forces for the heat and mass transfer, respectively. Numerical solutions are obtained for the temperature distribution over the fin surface when the fin surface is dry, fully wet, and partially wet. The psychrometric correlation of an air-water vapor mixture was used to simulate the relation between the temperature and humidity ratio instead of the linear approximate correlations used in the literature. The effect of atmospheric pressure on the fin efficiency was also studied, in addition to fin optimum thickness for specific operating conditions. The numerical solution was compared with those of previous studies in order to find if the linear model in the published analytical results are near to the real situation. It is found that the linear model for the relation between the humidity ratio and the temperature used by Wu and Bong is a reasonable engineering approximation for small values of the fin parameter and at low relative humidities.  相似文献   

7.
刘瑞  师晋生  陈东 《节能技术》2005,23(4):317-320
本文引用无量纲品质因数F,分别对平板和叉排散热器的换热性能进行了综合分析。研究了空气流动速度、肋片排列方式以及几何尺寸对散热器综合换热性能的影响,并且以最小化F为目标函数优化了散热器。计算所得的数据有利于散热器结构的设计与改进。  相似文献   

8.
This article analyzes the effect of external heat transfer on the thermal performance of counterflow microchannel heat exchangers. Equations for predicting the axial temperature and the effectiveness of both fluids as well as the heat transferred between the fluids, while operating under external heating or cooling conditions, are provided in this article. External heating may decrease and increase the effectiveness of the hot and cold fluids, respectively. External cooling may improve and degrade the effectiveness of the hot and cold fluids, respectively. For unbalanced flows, the thermal performance of the microchannel heat exchanger subjected to external heat transfer depends on the fluid with the lowest heat capacity. At a particular number of transfer units (NTU), the effectiveness of both the fluids increased with decrease in heat capacity ratio when the hot fluid had the lowest heat capacity. When the cold fluid had the lowest heat capacity, the effectiveness of both fluids increased with decrease in heat capacity ratio at low values of NTU but at high values of NTU the effectiveness increased with increase in heat capacity ratio. A term called the “performance factor” has been introduced in this article to assess the relative change in effectiveness due to external heat transfer.  相似文献   

9.
Ertan Buyruk 《传热工程》2018,39(15):1392-1404
In the present study, the potential of rectangular fins with different fin types of inner zigzag-flat-outer zigzag (B-type) and outer zigzag-flat-outer zigzag (C-type) and with different fin angles of 30° and 90° for 2 mm fin height and 10 mm offset from the horizontal direction for heat transfer enhancement with the use of a conjugated heat transfer approach and for pressure drop in a plate fin heat exchanger is numerically evaluated. The rectangular fins are located on a flat plate channel (A-type). The numerical computations are performed by solving a steady, three-dimensional Navier–Stokes equation and an energy equation by using FLUENT software program. Air is taken as working fluid. The study is carried out at Reynolds number of 400 and inlet temperatures, velocities of cold and hot air are fixed as 300 K, 600 K and 1.338 m.s?1, 0.69 m.s?1, respectively. This study presents new fin geometries which have not been researched in the literature for plate fin heat exchangers. The results show that while the heat transfer is increased by about 10% at the exit of a channel with the fin type of C, it is increased up to 8% for the fin angle of 90° when compared to a channel with A-type under the counter flow. The heat transfer enhancements for different values of Reynolds number and for varying fin heights, fin intervals and also temperature distributions of fluids are investigated for parallel and counter flow.  相似文献   

10.
董军启  陈江平  袁庆丰  陈芝久 《动力工程》2006,26(6):871-874,903
风洞试验台上对8种不同结构参数的百叶窗翅片进行传热和流动阻力的性能试验。分析比较了翅片长度、翅片间距、翅片高度对其传热和阻力性能的影响,其中翅片长度和翅片间距对无量纲传热j因子和摩擦阻力f因子影响较大,翅片高度影响较小。同时采用3√j/f因子综合评价了8种翅片的强化传热效果。结果表明,翅片长度对强化传热影响最为显著。  相似文献   

11.
12.
螺旋折流板管壳式换热器壳程传热性能及压降的研究   总被引:2,自引:0,他引:2  
本文对螺旋折流板换热器和传统的弓形折流板换热器进行了壳程传热性能和壳程的阻力的对比,同时通过实验方法对25°、40°螺旋角的螺旋折流板和弓形折流板换热器进行了壳程传热性能和壳程阻力的研究,得出螺旋折流板换热器的螺旋流动强化了传热,螺旋折流板换热器的壳程阻力比弓形折流板换热器的壳程阻力小。  相似文献   

13.
Abstract

Numerical techniques have been used to solve the thermally developed regime for a laminar pipe flow that exchanges heat with a fluid environment in the presence of a circumferentially varying external heat transfer coefficient. By making use of the fact that the temperature distributions have similar shapes at successive streamwise locations, the three-dimensional temperature field was scaled to two dimensions. The resulting two-dimensional eigenvalue problem was solved by a rapidly converging automated scheme that successively refines an initial guess. Solutions were obtained for two circumferential distributions of the external heat transfer coefficient respectively intended to model forced and natural convection cross flows. The circumferential average heat transfer coefficient was found to be quite insensitive to the imposed circumferential variations. The local wall heat flux is nearly circumferentially uniform when the mean value of the external coefficient is high. On the other hand, at low mean values of the external coefficient, the local wall heat flux tends to follow the imposed circumferential variations.  相似文献   

14.
This paper presents the results of model investigation of the heat transfer in plain and combined plain and diagonally finned convective tube banks. A heat and mass transfer analogy, by means of a naphthalene sublimation technique, is used. The effect of tube bank arrangement on heat transfer coefficients and flow resistance is discussed. The results show an increase of Nusselt numbers in comparison to those obtained for plain tube arrangements; however, a significantly higher flow resistance accompanies this increase.  相似文献   

15.
In this article, a numerical study is conducted to predict the air-side heat transfer and pressure drop characteristics of slit fin-and-tube heat transfer surfaces. A three-dimensional steady laminar model is applied, and the heat conduction in the fins is also considered. Five types of slit fins, named slit 1, slit 2, slit 3, slit 4, and slit 5, are investigated, which have the same global geometry dimensions and the same numbers of strips on the fin surfaces. The only difference among the five slit fins lies in the strip arrangement. Slit 1 has all the strips located in the front part of the fin surface, then, following the order from slit 1 to slit 5, the strip number in the front part decreases and, correspondingly, the strip number in the rear part increases, so that all the strips of slit 5 are located in the rear part. Furthermore, slit 1 and slit 5, slit 2 and slit 4, have a symmetrical strip arrangement along the flow direction. The numerical results show that, following the order from slit 1 and slit 5, the heat transfer rate increases at first, reaching a maximum value at slit 3, which has the strip arrangement of “front coarse and rear dense”; after that, it begins to decrease, as does the fin efficiency. Although they have the symmetrical strip arrangement along the flow direction, slit 5 has 7% more Nusselt number than slit 1, and slit 4 also has 7% more Nusselt number than slit 2, which shows that strip arrangement in the rear part is more effective than that in the front part. Then the difference of heat transfer performance among five slit fins is analyzed from the viewpoint of thermal resistance, which shows that when the thermal resistances in the front and rear parts are nearly identical, the optimum enhanced heat transfer fin can be obtained. This quantitative rule, in conjunction with the previously published qualitative principle of “front sparse and rear dense,” can give both quantitative and qualitative guides to the design of efficient slotted fin surfaces. Finally, the influence of fin material on the performance of enhanced-heat-transfer fins is discussed.  相似文献   

16.
应用-两方程模型对分离结构扰流柱的叶片内冷通道的换热与流动进行了三维数值模拟研究,扰流柱的布置按简单叉排方式。计算结果表明:在本文的参数范围内,与完整扰流柱相比,分离结构扰流柱的换热效果略有增强,而阻力系数随之增大,分离位置居中的扰流柱通道的换热效果最好。随着开缝厚度的增加,通道表面换热效果和流动阻力系数均先略有增大而后逐渐减小。  相似文献   

17.
Erfan Rasouli 《传热工程》2016,37(11):994-1011
Single-phase heat transfer and pressure drop of liquid nitrogen in microscale heat sinks are studied experimentally in this paper. Effects of geometrical variations are characterized on the thermofluidic performance of staggered microscale pin fin heat sinks. Pitch-to-diameter ratio and aspect ratio of the micro pin fins are varied. The pin fins have square shape with 200 or 400 μm width and are oriented at 45 degrees to the flow direction. Thermal performance of the heat sinks is evaluated for Reynolds numbers (based on pin fin hydraulic diameter) from 108 to 570. Results are presented in a nondimensional form in terms of friction factor, Nusselt number, and Reynolds number and are compared with the predictions of existing correlations in the literature for micro pin fin heat sinks. Comparison of flow and heat transfer performance of the micro pin fin heat sinks reveals that at a particular critical Reynolds number of ~250, pin fin heat sinks with the same aspect ratio but larger pitch ratio show a transition in both friction factor and Nusselt number. In order to better characterize this transition, visualization experiments were performed with the Fluorinert PF5060 using an infrared camera. At the critical Reynolds number, for the larger pitch ratio pin fin heat sink, surface thermal intensity profiles suggest periodic flapping of the flow behind the pin fins at a Strouhal number of 0.227.  相似文献   

18.
This article reports the numerical geometric optimization of three-dimensional microchannel heat sinks with rectangular, elliptic, and isosceles triangular cross sections. The cross-sectional areas of the mentioned microchannels can change according to the degrees of freedom, that is, the aspect ratio and the solid volume fraction. Actually, the purpose of geometric optimization is to determine the optimal values of these parameters in such a way that the peak temperature of the wall is minimized. The effects of solid volume fraction and pressure drop upon the aspect ratio, hydraulic diameter, and peak temperature of the microchannels are investigated. Moreover, these microchannel heat sinks are compared with each other at their optimal conditions. Considering the constraints and geometric parameters for the optimization of the present study, it is revealed that microchannel heat sinks with rectangular and elliptic cross sections have similar performances, while microchannels with isosceles triangular cross sections show weaker performances. The optimal shapes of all three kinds of channels are achieved numerically and compared with the approximate results obtained from scale analysis, for which good agreements are observed.  相似文献   

19.
Ashish Dixit 《传热工程》2013,34(16):1409-1416
Material removal from an extended surface in the form of perforations and slots is a proven technique to augment heat transfer rates with a considerable reduction in the surface weight. This work presents the outcomes of experimental investigation on heat transfer characteristics of a plate fin having grooves of various configurations on two broad faces. The experimental data pertaining to heat transfer have been collected by varying Reynolds number from 1500 to 5000, for transverse grooved, inclined grooved, V-grooved, and multi-V-grooved fin. The results of the grooved fin are compared with that of a smooth conventional fin to gauge the heat transfer performance of modified fin. The maximum enhancement in Nusselt number corresponds to the inclined groove fin, whereas the highest value of grooved fin effectiveness is obtained for the multi-V-grooved fin. The Nusselt number correlations are presented for different fin configurations tested in this work.  相似文献   

20.
低雷诺数流动错位翅片传热和压降特性的实验研究   总被引:1,自引:0,他引:1  
通过对油水板翅式换热器进行的性能试验,得到了低雷诺数流动下板翅式换热器翅片侧传热与阻力特性的数据,在此基础上获得了错位翅片传热因子与摩擦系数的准则关系式,传热因子和摩擦系数的最大计算误差分别为0.62%和1.44%。根据这些准则关系式提出了一个衡量翅片质量的经济系数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号