首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The inorganic semiconductor is an attractive material in sewage disposal and solar power generation. The main challenges associated with environment‐sensitive semiconductors are structural degradation and deactivation caused by the unfavorable environment. Here, inspired by the pomegranate, a self‐protection strategy based on the self‐assembly of silver chloride (AgCl) particles is reported. The distributed photosensitive AgCl particles can be encapsulated by themselves through mixing aqueous silver nitrate and protic ionic liquids (PILs). A probable assembling mechanism is proposed based on the electrostatic potential investigation of PILs cations. The AgCl particles inside the shell maintain their morphology and structure well after 6 months light‐treatment. Moreover, they exhibit excellent photocatalytic activity, same as newly prepared AgCl particles, for degradation of methyl orange (MO), neutral red (NR), bromocresol green (BG), rhodamine B (RhB), Congo red (CR), and crystal violet (CV).  相似文献   

6.
7.
8.
9.
10.
Herein, an all‐solid‐state sequential self‐organization and self‐assembly process is reported for the in situ construction of a color tunable luminous inorganic/polymer hybrid with high direct piezoresponse. The primary inorganic self‐organization in solid polymer and the subsequent polymer self‐assembly are achieved at high pressure with the first utilization of piezo‐copolymer (PVDF‐TrFE) as the host matrix of guest carbon quantum dots (CQDs). This process induces the spontaneous formation of a highly ordered, microscale, polygonal, and hierarchically structured CQDs/PVDF‐TrFE hybrid with multicolor photoluminescence, consisting of very thermodynamic stable polar crystalline nanowire arrays. The electrical polarization‐free CQDs/PVDF‐TrFE hybrids can efficiently harvest the environmental available kinetic mechanical energy with a new large‐scale group‐cooperation mechanism. The open‐circuit voltage and short‐circuit current outputs reach up to 29.6 V cm?2 and 550 nA cm?2, respectively. The CQDs/PVDF‐TrFE–based hybrid nanogenerator demonstrates drastically improved durable and reliable features during the real‐time demonstration of powering commercial light emitting diodes. No attenuation/fluctuation of the electrical signals is observed for ≈10 000 continuous working cycles. This study may offer a new design concept for progressively but spontaneously constructing novel multiple self‐adaptive complex inorganic/polymer hybrids that promise applications in the next generation of self‐powered autonomous optoelectronic devices.  相似文献   

11.
12.
13.
14.
Over the past few years, there has been a great deal of interest in the development of hydrogel materials with tunable structural, mechanical, and rheological properties, which exhibit rapid and autonomous self‐healing and self‐recovery for utilization in a broad range of applications, from soft robotics to tissue engineering. However, self‐healing hydrogels generally either possess mechanically robust or rapid self‐healing properties but not both. Hence, the development of a mechanically robust hydrogel material with autonomous self‐healing on the time scale of seconds is yet to be fully realized. Here, the current advances in the development of autonomous self‐healing hydrogels are reviewed. Specifically, methods to test self‐healing efficiencies and recoveries, mechanisms of autonomous self‐healing, and mechanically robust hydrogels are presented. The trends indicate that hydrogels that self‐heal better also achieve self‐healing faster, as compared to gels that only partially self‐heal. Recommendations to guide future development of self‐healing hydrogels are offered and the potential relevance of self‐healing hydrogels to the exciting research areas of 3D/4D printing, soft robotics, and assisted health technologies is highlighted.  相似文献   

15.
Structural strain due to lattice mismatch is used to promote the formation of a self‐assembled network of antidots in highly epitaxial La2/3Sr1/3MnO3 thin films grown on (001) oriented SrTiO3 substrates by radiofrequency magnetron sputtering. Size, depth, and separation between antidots can be controlled by changing deposition parameters and the miscut angle of the substrate. This morphology exhibits a remarkable magnetic anisotropy and offers unique opportunities for versatile nanostencils for the preparation of nano‐object networks that can be of major relevance for the fabrication of oxide‐based magnetic and magnetoelectronic devices.  相似文献   

16.
17.
18.
Previous and current research on piezoresistivity of polymer composites filled with carbon nanostructures is reviewed. The review covers the use of the coupled electro‐mechanical response of these materials to self‐sense their strain and damage during mechanical loading. The mechanisms yielding changes in electrical resistance upon mechanical loading in polymer composites filled with carbon nanostructures are first discussed. Published knowledge is then summarized, starting with framework literature on carbon black and graphite and then moving to more recent research on carbon nanotubes, exfoliated graphite, and few‐layer graphene sheets. Piezoresistive studies of polymer nanocomposites with aligned carbon fillers are also reviewed. It is aimed that this review contributes in collecting, organizing, and summarizing the knowledge, foundations, and state of the art on the piezoresistive response of polymer composites filled with different carbon allotropes, providing new perspectives and advancing towards the fast development of smart self‐sensing carbon filled nanocomposites.
  相似文献   

19.
Spider silk is a fascinating material, combining high strength and elasticity that outperforms most synthetic fibers. Another intriguing feature of spider silk is its ability to “supercontract,” shrinking up to 50% when exposed to water. This is likely on account of the entropy‐driven recoiling of secondary structured proteins when water penetrates the spider silk. In contrast, humidity‐driven contraction in synthetic fibers is difficult to achieve. Here, inspired by the spider silk model, a supercontractile fiber (SCF), which contracts up to 50% of its original length at high humidity, comparable to spider silk, is reported. The fiber exhibits up to 300% uptake of water by volume, confirmed via environmental scanning electron microscopy. Interestingly, the SCF exhibits tunable mechanical properties by varying humidity, which is reflected by the prolonged failure strain and the reversible damping capacity. This smart supramolecular fiber material provides a new opportunity of fabricating biomimetic muscle for diverse applications.  相似文献   

20.
A well‐ordered two‐dimensional (2D) network consisting of two crossed Au silicide nanowire (NW) arrays is self‐organized on a Si(110)‐16 × 2 surface by the direct‐current heating of ≈1.5 monolayers of Au on the surface at 1100 K. Such a highly regular crossbar nanomesh exhibits both a perfect long‐range spatial order and a high integration density over a mesoscopic area, and these two self‐ordering crossed arrays of parallel‐aligned NWs have distinctly different sizes and conductivities. NWs are fabricated with widths and pitches as small as ≈2 and ≈5 nm, respectively. The difference in the conductivities of two crossed‐NW arrays opens up the possibility for their utilization in nanodevices of crossbar architecture. Scanning tunneling microscopy/spectroscopy studies show that the 2D self‐organization of this perfect Au silicide nanomesh can be achieved through two different directional electromigrations of Au silicide NWs along different orientations of two nonorthogonal 16 × 2 domains, which are driven by the electrical field of direct‐current heating. Prospects for this Au silicide nanomesh are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号