首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All‐inorganic perovskite solar cells have developed rapidly in the last two years due to their excellent thermal and light stability. However, low efficiency and moisture instability limit their future commercial application. The mixed‐halide inorganic CsPbI2Br perovskite with a suitable bandgap offers a good balance between phase stability and light harvesting. However, high defect density and low carrier lifetime in CsPbI2Br perovskites limit the open‐circuit voltage (Voc < 1.2 V), short‐circuit current density (Jsc < 15 mA cm?2), and fill factor (FF < 75%) of CsPbI2Br perovskite solar cells, resulting in an efficiency below 14%. For the first time, a CsPbI2Br perovskite is doped by Eu(Ac)3 to obtain a high‐quality inorganic perovskite film with a low defect density and long carrier lifetime. A high efficiency of 15.25% (average efficiency of 14.88%), a respectable Voc of 1.25 V, a reasonable Jsc of 15.44 mA cm?2, and a high FF of 79.00% are realized for CsPbI2Br solar cells. Moreover, the CsPbI2Br solar cells with Eu(Ac)3 doping demonstrate excellent air stability and maintain more than 80% of their initial power conversion efficiency (PCE) values after aging in air (relative humidity: 35–40%) for 30 days.  相似文献   

2.
A synergic interface design is demonstrated for photostable inorganic mixed‐halide perovskite solar cells (PVSCs) by applying an amino‐functionalized polymer (PN4N) as cathode interlayer and a dopant‐free hole‐transporting polymer poly[5,5′‐bis(2‐butyloctyl)‐(2,2′‐bithiophene)‐4,4′‐dicarboxylate‐alt‐5,5′‐2,2′‐bithiophene] (PDCBT) as anode interlayer. First, the interfacial dipole formed at the cathode interface reduces the workfunction of SnO2, while PDCBT with deeper‐lying highest occupied molecular orbital (HOMO) level provides a better energy‐level matching at the anode, leading to a significant enhancement in open‐circuit voltage (Voc) of the PVSCs. Second, the PN4N layer can also tune the surface wetting property to promote the growth of high‐quality all‐inorganic perovskite films with larger grain size and higher crystallinity. Most importantly, both theoretical and experimental results reveal that PN4N and PDCBT can interact strongly with the perovskite crystal, which effectively passivates the electronic surface trap states and suppresses the photoinduced halide segregation of CsPbI2Br films. Therefore, the optimized CsPbI2Br PVSCs exhibit reduced interfacial recombination with efficiency over 16%, which is one of the highest efficiencies reported for all‐inorganic PVSCs. A high photostability with a less than 10% efficiency drop is demonstrated for the CsPbI2Br PVSCs with dual interfacial modifications under continuous 1 sun equivalent illumination for 400 h.  相似文献   

3.
The emergence of cesium lead iodide (CsPbI3) perovskite solar cells (PSCs) has generated enormous interest in the photovoltaic research community. However, in general they exhibit low power conversion efficiencies (PCEs) because of the existence of defects. A new all‐inorganic perovskite material, CsPbI3:Br:InI3, is prepared by defect engineering of CsPbI3. This new perovskite retains the same bandgap as CsPbI3, while the intrinsic defect concentration is largely suppressed. Moreover, it can be prepared in an extremely high humidity atmosphere and thus a glovebox is not required. By completely eliminating the labile and expensive components in traditional PSCs, the all‐inorganic PSCs based on CsPbI3:Br:InI3 and carbon electrode exhibit PCE and open‐circuit voltage as high as 12.04% and 1.20 V, respectively. More importantly, they demonstrate excellent stability in air for more than two months, while those based on CsPbI3 can survive only a few days in air. The progress reported represents a major leap for all‐inorganic PSCs and paves the way for their further exploration in order to achieve higher performance.  相似文献   

4.
In this work, a SnO2/ZnO bilayered electron transporting layer (ETL) aimed to achieve low energy loss and large open‐circuit voltage (Voc) for high‐efficiency all‐inorganic CsPbI2Br perovskite solar cells (PVSCs) is introduced. The high‐quality CsPbI2Br film with regular crystal grains and full coverage can be realized on the SnO2/ZnO surface. The higher‐lying conduction band minimum of ZnO facilitates desirable cascade energy level alignment between the perovskite and SnO2/ZnO bilayered ETL with superior electron extraction capability, resulting in a suppressed interfacial trap‐assisted recombination with lower charge recombination rate and greater charge extraction efficiency. The as‐optimized all‐inorganic PVSC delivers a high Voc of 1.23 V and power conversion efficiency (PCE) of 14.6%, which is one of the best efficiencies reported for the Cs‐based all‐inorganic PVSCs to date. More importantly, decent thermal stability with only 20% PCE loss is demonstrated for the SnO2/ZnO‐based CsPbI2Br PVSCs after being heated at 85 °C for 300 h. These findings provide important interface design insights that will be crucial to further improve the efficiency of all‐inorganic PVSCs in the future.  相似文献   

5.
Inorganic cesium lead halide (i.e., CsPbI3−xBrx) perovskite solar cells have made great breakthroughs in the last years with power conversion efficiency beyond 20%, thermal and photo stability reaching hundreds of hours. Hole transporting materials, as important building blocks in perovskite solar cells, present significant influences on both performance and stability. Understanding the energy loss mechanisms and failure pathways of inorganic perovskite solar cells that are originated from the hole transporting layer and the adjacent interfaces paves the way to enhance the efficiency towards Shockley-Queisser limit and to approach the long-term stability requirement. In this review, we first briefly overview the fundamentals of inorganic perovskites and solar cells, particularly on the criteria for designing and engineering efficient hole transporting materials. Second, we give a comprehensive review of recent advances on inorganic, small molecular and polymeric hole transporting materials. Finally, we discuss the challenges of state-of-the-art inorganic perovskite solar cells in view of the hole transporting materials and conclude this review by providing perspective on development of advanced hole transporting materials towards next-generation efficient and stable inorganic PSCs.  相似文献   

6.
Wide-bandgap inorganic cesium lead halide CsPbIBr2 is a popular optoelectronic material that researchers are interested in because of the character that balances the power conversion efficiency and stability of solar cells. It also has great potential in semitransparent solar cells, indoor photovoltaics, and as a subcell for tandem solar cells. Although CsPbIBr2-based devices have achieved good performance, the open-circuit voltage (Voc) of CsPbIBr2-based perovskite solar cells (PSCs) is still lower, and it is critical to further reduce large energy losses (Eloss). Herein, a strategy is proposed for achieving surface p-type doping for CsPbIBr2-based perovskite for the first time, using 1,5-Diaminopentane dihydroiodide at the perovskite surface to improve hole extraction efficiency. Meanwhile, the adjusted energy levels reduce Eloss and improve Voc of the CsPbIBr2 PSCs. Furthermore, the Cs- and Br-vacancies at the interface are filled, reducing structural disorder and defect states and thus improving the quality of the perovskite film. As a result, the target device achieves a high efficiency of 11.02% with a Voc of 1.33 V, which is among the best values. In addition to the improved performance, the stability of the target device under various conditions is enhanced, and the lead leakage is effectively suppressed.  相似文献   

7.
All‐inorganic CsPbIBr2 perovskite has recently received growing attention due to its balanced band gap and excellent environmental stability. However, the requirement of high‐temperature processing limits its application in flexible devices. Herein, a low‐temperature seed‐assisted growth (SAG) method for high‐quality CsPbIBr2 perovskite films through reducing the crystallization temperature by introducing methylammonium halides (MAX, X = I, Br, Cl) is demonstrated. The mechanism is attributed to MA cation based perovskite seeds, which act as nuclei lowering the formation energy of CsPbIBr2 during the annealing treatment. It is found that methylammonium bromide treated perovskite (Pvsk‐Br) film fabricated at low temperature (150 °C) shows micrometer‐sized grains and superior charge dynamic properties, delivering a device with an efficiency of 10.47%. Furthermore, an efficiency of 11.1% is achieved for a device based on high‐temperature (250 °C) processed Pvsk‐Br film via the SAG method, which presents the highest reported efficiency for inorganic CsPbIBr2 solar cells thus far.  相似文献   

8.
Although organic–inorganic hybrid perovskite solar cells (PVSCs) have achieved dramatic improvement in device efficiency, their long‐term stability remains a major concern prior to commercialization. To address this issue, extensive research efforts are dedicated to exploiting all‐inorganic PVSCs by using cesium (Cs)‐based perovskite materials, such as α‐CsPbI3. However, the black‐phase CsPbI3 (cubic α‐CsPbI3 and orthorhombic γ‐CsPbI3 phases) is not stable at room temperature, and it tends to convert to the nonperovskite δ‐CsPbI3 phase. Here, a simple yet effective approach is described to prepare stable black‐phase CsPbI3 by forming a heterostructure comprising 0D Cs4PbI6 and γ‐CsPbI3 through tuning the stoichiometry of the precursors between CsI and PbI. Such heterostructure is manifested to enable the realization of a stable all‐inorganic PVSC with a high power conversion efficiency of 16.39%. This work provides a new perspective for developing high‐performance and stable all‐inorganic PVSCs.  相似文献   

9.
Organic–inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley–Queisser limit of single‐junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss) in small‐ and large‐bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite–perovskite tandem solar cells with small V oc,loss. A fullerene variant, Indene‐C60 bis‐adduct, is used to achieve optimized interfacial contact in a small‐bandgap (≈1.2 eV) subcell, which facilitates higher quasi‐Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large‐bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite–perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state‐of‐the‐art silicon–perovskite tandem solar cells, which highlights the prospects of using perovskite–perovskite tandems for solar‐energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar‐to‐hydrogen efficiencies beyond 15%.  相似文献   

10.
Organic–inorganic lead halide perovskite solar cells (PVSCs), as a competing technology with traditional inorganic solar cells, have now realized a high power conversion efficiency (PCE) of 22.1%. In PVSCs, interfacial carrier recombination is one of the dominant energy‐loss mechanisms, which also results in the simultaneous loss of potential efficiency. In this work, for planar inverted PVSCs, the carrier recombination is dominated by the dopant concentration in the p‐doped hole transport layers (HTLs), since the F4‐TCNQ dopant induces more charge traps and electronic transmission channels, thus leading to a decrease in open‐circuit voltages (VOC). This issue is efficiently overcome by inserting a thin insulating polymer layer (poly(methyl methacrylate) or polystyrene) as a passivation layer with an appropriate thickness, which allows for increases in the VOC without significantly sacrificing the fill factor. It is believed that the passivation layer attributes to the passivation of interfacial recombination and the suppression of current leakage at the perovskite/HTL interface. By manipulating this interfacial passivation technique, a high PCE of 20.3% is achieved without hysteresis. Consequently, this versatile interfacial passivation methodology is highly useful for further improving the performance of planar inverted PVSCs.  相似文献   

11.
All‐inorganic cesium lead halide perovskite is suggested as a promising candidate for perovskite solar cells due to its prominent thermal stability and comparable light absorption ability. Designing textured perovskite films rather than using planar‐architectural perovskites can indeed optimize the optical and photoelectrical conversion performance of perovskite photovoltaics. Herein, for the first time, this study demonstrates a rational strategy for fabricating carbon quantum dot (CQD‐) sensitized all‐inorganic CsPbBr3 perovskite inverse opal (IO) films via a template‐assisted, spin‐coating method. CsPbBr3 IO introduces slow‐photon effect from tunable photonic band gaps, displaying novel optical response property visible to naked eyes, while CQD inlaid among the IO frameworks not only broadens the light absorption range but also improves the charge transfer process. Applied in the perovskite solar cells, compared with planar CsPbBr3, slow‐photon effect of CsPbBr3 IO greatly enhances the light utilization, while CQD effectively facilitates the electron–hole extraction and injection process, prolongs the carrier lifetime, jointly contributing to a double‐boosted power conversion efficiency (PCE) of 8.29% and an increased incident photon‐to‐electron conversion efficiency of up to 76.9%. The present strategy on CsPbBr3 IO to enhance perovskite PCE can be extended to rationally design other novel optoelectronic devices.  相似文献   

12.
Photodetectors are critical parts of an optical communication system for achieving efficient photoelectronic conversion of signals, and the response speed directly determines the bandwidth of the whole system. Metal halide perovskites, an emerging class of low‐cost solution‐processed semiconductors, exhibiting strong optical absorption, low trap states, and high carrier mobility, are widely investigated in photodetection applications. Herein, through optimizing the device engineering and film quality, high‐performance photodetectors based on all‐inorganic cesium lead halide perovskite (CsPbIxBr3–x), which simultaneously possess high sensitivity and fast response, are demonstrated. The optimized devices processed from CsPbIBr2 perovskite show a practically measured detectable limit of about 21.5 pW cm?2 and a fast response time of 20 ns, which are both among the highest reported device performance of perovskite‐based photodetectors. Moreover, the photodetectors exhibit outstanding long‐term environmental stability, with negligible degradation of the photoresponse property after 2000 h under ambient conditions. In addition, the resulting perovskite photodetector is successfully integrated into an optical communication system and its applications as an optical signal receiver on transmitting text and audio signals is demonstrated. The results suggest that all‐inorganic metal halide perovskite‐based photodetectors have great application potential for optical communication.  相似文献   

13.
The prevailing perovskite solar cells (PSCs) employ hybrid organic–inorganic halide perovskites as light absorbers, but these materials exhibit relatively poor environmental stability, which potentially hinders the practical deployment of PSCs. One important strategy to address this issue is replacing the volatile and hygroscopic organic cations with inorganic cesium cations in the crystal structure, forming all-inorganic halide perovskites. In this context, CsPbI3 perovskite is drawing phenomenal attention, primarily because it exhibits an ideal bandgap of 1.7 eV for the use in tandem solar cells, and it shows significantly enhanced thermal stability that is the key to the long-term device operation. Within only half a decade, the power conversion efficiency (PCE) of CsPbI3 PSCs has ramped beyond 20%, which has been driven by inventions of numerous processing methods for high-quality CsPbI3 perovskite thin films. These methods are broadly classified into three categories: vapor deposition, nanocrystals assembly, and solution deposition. Herein we present a systematic review on these methods and related materials sciences. In particular, we comprehensively discuss the dimethylammonium-additive-based solution deposition, which has resulted into the best-performing CsPbI3 PSCs. We also present the challenges and prospects on future research towards the realization of the full potential of CsPbI3 PSCs.  相似文献   

14.
Although inorganic perovskite solar cells (PSCs) are promising in thermal stability, their large open-circuit voltage (VOC) deficit and difficulty in large-area preparation still limit their development toward commercialization. The present work tailors C60 via a codoping strategy to construct an efficient electron-transporting layer (ETL), leading to a significant improvement in VOC of the inverted inorganic CsPbI2Br PSC. Specifically, tris(pentafluorophenyl)borane (TPFPB) is introduced as a dopant to lower the lowest unoccupied molecular orbital (LUMO) level of the C60 layer by forming a Lewis acidic adduct. The enlarged free energy difference provides a favorable enhancement in electron injection and thereby reduces charge recombination. Subsequently, a nonhygroscopic lithium salt (LiClO4) is added to increase electron mobility and conductivity of the film, leading to a reduction in the device hysteresis and facilitating the fabrication of a large-area device. Finally, the as-optimized inorganic CsPbI2Br PSCs gain a champion power conversion efficiency (PCE) of 15.19%, with a stabilized power output (SPO) of 14.21% (0.09 cm2). More importantly, this work also demonstrates a record PCE of 14.44% for large-area inorganic CsPbI2Br PSCs (1.0 cm2) and reports the first inorganic perovskite solar module with the excellent efficiency exceeding 12% (10.92 cm2) by a self-developed quasi-curved heating method.  相似文献   

15.

Carbon-based perovskite solar cells (C-PSCs) have been popular for achieving low-cost and stable photovoltaics. To overcome an obstacle of high-temperature annealing process for producing titanium dioxide (TiO2), CsPbI2Br C-PSCs based on a device structure of FTO/tin oxide (SnO2)/CsPbI2Br/carbon electrode can be fabricated at the low-temperature annealing process of 280 °C for 180 s, where SnO2 is used as the electron transporting layer (ETL). Experimental results showed that the suitable concentration of SnO2 ETL could yield smooth surface CsPbI2Br films with free-pinhole and larger grain-sized crystallization. In combination with prolonging annealing time, a champion power conversion efficiency of 9.68% with a larger open-circuit voltage (Voc) of 1.14 V was obtained for CsPbI2Br C-PSC based on SnO2 ETL. Here, a simple low-temperature fabricating process of SnO2 ETL can be adapted to flexible substrates for C-PSCs and furtherly reduce the manufacturing cost.

  相似文献   

16.
Despite great progress in the photovoltaic conversion efficiency (PCE) of inorganic–organic hybrid perovskite solar cells (PSCs), the large‐scale application of PSCs still faces serious challenges due to the poor‐stability and high‐cost of the spiro‐OMeTAD hole transport layer (HTL). It is of great fundamental importance to rationally address the issues of hole extraction and transfer arising from HTL‐free PSCs. Herein, a brand‐new PSC architecture is designed by introducing multigraded‐heterojunction (GHJ) inorganic perovskite CsPbBrx I3?x layers as an efficient HTL. The grade adjustment can be achieved by precisely tuning the halide proportion and distribution in the CsPbBrx I3?x film to reach an optimal energy alignment of the valance and conduction band between MAPbI3 and CsPbBrx I3?x . The CsPbBrx I3?x GHJ as an efficient HTL can induce an electric field where a valance/conduction band edge is leveraged to bend at the heterojunction interface, boosting the interfacial electron–hole splitting and photoelectron extraction. The GHJ architecture enhances the hole extraction and conduction efficiency from the MAPbI3 to the counter electrode, decreases the recombination loss during the hole transfer, and benefits in increasing the open‐circuit voltage. The optimized HTL‐free PCS based on the GHJ architecture demonstrates an outstanding thermal stability and a significantly improved PCE of 11.33%, nearly 40% increase compared with 8.16% for pure HTL‐free devices.  相似文献   

17.
Perovskite solar cells increasingly feature mixed‐halide mixed‐cation compounds (FA1?x?yMAxCsyPbI3?zBrz) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineering leads to a systematic widening of the anti‐solvent processing window for the fabrication of high‐quality films and efficient solar cells. This window widens from seconds, in the case of single cation/halide systems (e.g., MAPbI3, FAPbI3, and FAPbBr3), to several minutes for mixed systems. In situ X‐ray diffraction studies reveal that the processing window is closely related to the crystallization of the disordered sol–gel and to the number of crystalline byproducts; the processing window therefore depends directly on the precise cation/halide composition. Moreover, anti‐solvent dripping is shown to promote the desired perovskite phase with careful formulation. The processing window of perovskite solar cells, as defined by the latest time the anti‐solvent drip yields efficient solar cells, broadened with the increasing complexity of cation/halide content. This behavior is ascribed to kinetic stabilization of sol–gel state through cation/halide engineering. This provides guidelines for designing new formulations, aimed at formation of the perovskite phase, ultimately resulting in high‐efficiency perovskite solar cells produced with ease and with high reproducibility.  相似文献   

18.
Research on chemically stable inorganic perovskites has achieved rapid progress in terms of high efficiency exceeding 19% and high thermal stabilities, making it one of the most promising candidates for thermodynamically stable and high-efficiency perovskite solar cells. Among those inorganic perovskites, CsPbI3 with good chemical components stability possesses the suitable bandgap (≈1.7 eV) for single-junction and tandem solar cells. Comparing to the anisotropic organic cations, the isotropic cesium cation without hydrogen bond and cation orientation renders CsPbI3 exhibit unique optoelectronic properties. However, the unideal tolerance factor of CsPbI3 induces the challenges of different crystal phase competition and room temperature phase stability. Herein, the latest important developments regarding understanding of the crystal structure and phase of CsPbI3 perovskite are presented. The development of various solution chemistry approaches for depositing high-quality phase-pure CsPbI3 perovskite is summarized. Furthermore, some important phase stabilization strategies for black phase CsPbI3 are discussed. The latest experimental and theoretical studies on the fundamental physical properties of photoactive phase CsPbI3 have deepened the understanding of inorganic perovskites. The future development and research directions toward achieving highly stable CsPbI3 materials will further advance inorganic perovskite for highly stable and efficient photovoltaics.  相似文献   

19.
The carrier concentration of the electron‐selective layer (ESL) and hole‐selective layer can significantly affect the performance of organic–inorganic lead halide perovskite solar cells (PSCs). Herein, a facile yet effective two‐step method, i.e., room‐temperature colloidal synthesis and low‐temperature removal of additive (thiourea), to control the carrier concentration of SnO2 quantum dot (QD) ESLs to achieve high‐performance PSCs is developed. By optimizing the electron density of SnO2 QD ESLs, a champion stabilized power output of 20.32% for the planar PSCs using triple cation perovskite absorber and 19.73% for those using CH3NH3PbI3 absorber is achieved. The superior uniformity of low‐temperature processed SnO2 QD ESLs also enables the fabrication of ≈19% efficiency PSCs with an aperture area of 1.0 cm2 and 16.97% efficiency flexible device. The results demonstrate the promise of carrier‐concentration‐controlled SnO2 QD ESLs for fabricating stable, efficient, reproducible, large‐scale, and flexible planar PSCs.  相似文献   

20.
In hybrid organic–inorganic lead halide perovskite solar cells, the energy loss is strongly associated with nonradiative recombination in the perovskite layer and at the cell interfaces. Here, a simple but effective strategy is developed to improve the cell performance of perovskite solar cells via the combination of internal doping by a ferroelectric polymer and external control by an electric field. A group of polarized ferroelectric (PFE) polymers are doped into the methylammonium lead iodide (MAPbI3) layer and/or inserted between the perovskite and the hole‐transporting layers to enhance the build‐in field (BIF), improve the crystallization of MAPbI3, and regulate the nonradiative recombination in perovskite solar cells. The PFE polymer‐doped MAPbI3 shows an orderly arrangement of MA+ cations, resulting in a preferred growth orientation of polycrystalline perovskite films with reduced trap states. In addition, the BIF is enhanced by the widened depletion region in the device. As an interfacial dipole layer, the PFE polymer plays a critical role in increasing the BIF. This combined effect leads to a substantial reduction in voltage loss of 0.14 V due to the efficient suppression of nonradiative recombination. Consequently, the resulting perovskite solar cells present a power conversion efficiency of 21.38% with a high open‐circuit voltage of 1.14 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号