首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Controllable manipulation of self‐organized dynamic superstructures of functional molecular materials by external stimuli is an enabling enterprise. Herein, we have developed a thermally driven, self‐organized helical superstructure, i.e., thermoresponsive cholesteric liquid crystal (CLC), by integrating a judiciously chosen thermoresponsive chiral molecular switch into an achiral liquid crystalline medium. The CLC in lying state, in both planar and twisted nematic cells, exhibits reversible in‐plane orthogonal switching of its helical axis in response to the combined effect of temperature and electric field. Consequently, the direction of the cholesteric grating has been observed to undergo 90° switching in a single cell, enabling non‐mechanical beam steering along two orthogonal directions. The ability to reversibly switch the cholesteric gartings along perpendicular directions by appropriately adjusting temperature and electric field strength could facilitate their applications in 2D beam steering, spectrum scanning, optoelectronics and beyond.  相似文献   

2.
Light‐induced phenomena occurring in nature and in synthetic materials are fascinating and have been exploited for technological applications. Here visible‐light‐induced formation of a helical superstructure is reported, i.e., a cholesteric liquid crystal phase, in orientationally ordered fluids, i.e., nematic liquid crystals, enabled by a visible‐light‐driven chiral molecular switch. The cyclic‐azobenzene‐based chiral molecular switch exhibits reversible photoisomerization in response to visible light of different wavelengths due to the band separation of n–π* transitions of its trans‐ and cis‐isomers. Green light (530 nm) drives the trans‐to‐cis photoisomerization whereas the cis‐to‐trans isomerization process of the chiral molecular switch can be caused by blue light (440 nm). It is observed that the helical twisting power of this chiral molecular switch increases upon irradiation with green light, which enables reversible induction of helical superstructure in nematic liquid crystals containing a very small quantity of the molecular switch. The occurrence of the light‐induced helical superstructure enables the formation of diffraction gratings in cholesteric films.  相似文献   

3.
The ability to tune molecular self‐organization with an external stimulus is a main driving force in the bottom‐up nanofabrication of molecular devices. Light‐driven chiral molecular switches or motors in liquid crystals that are capable of self‐organizing into optically tunable helical superstructures undoubtedly represent a striking example, owing to their unique property of selective light reflection and which may lead to applications in the future. In this review, we focus on different classes of light‐driven chiral molecular switches or motors in liquid crystal media for the induction and manipulation of photoresponsive cholesteric liquid crystal systems and their consequent applications. Moreover, the change of helical twisting powers of chiral dopants and their capability of helix inversion in the induced cholesteric phases are highlighted and discussed in the light of their molecular geometric changes.  相似文献   

4.
A cholesteric liquid crystal (CLC) is a self-assembled photonic crystal formed by rodlike molecules, including chiral molecules, that arrange themselves in a helical fashion. The CLC has a single photonic bandgap and an associated one-colour reflection band for circularly polarized light with the same handedness as the CLC helix (selective reflection). These optical characteristics, particularly the circular polarization of the reflected light, are attractive for applications in reflective colour displays without using a backlight, for use as polarizers or colour filters and for mirrorless lasing. Recently, we showed by numerical simulation that simultaneous multicolour reflection is possible by introducing fibonaccian phase defects. Here, we design and fabricate a CLC system consisting of thin isotropic films and of polymeric CLC films, and demonstrate experimentally simultaneous red, green and blue reflections (multiple photonic bandgaps) using the single-pitched polymeric CLC films. The experimental reflection spectra are well simulated by calculations. The presented system can extend applications of CLCs to a wide-band region and could give rise to new photonic devices, in which white or multicolour light is manipulated.  相似文献   

5.
Functional soft materials exhibiting distinct functionalities in response to a specific stimulus are highly desirable towards the fabrication of advanced devices with superior dynamic performances. Herein, two novel light‐driven chiral fluorescent molecular switches have been designed and synthesized that are able to exhibit unprecedented reversible Z/E photoisomerization behavior along with tunable fluorescence intensity in both isotropic and anisotropic media. Cholesteric liquid crystals fabricated using these new fluorescent molecular switches as chiral dopants exhibit reversible reflection color tuning spanning the visible and infrared region of the spectrum. Transparent display devices have been fabricated using both low chirality and high chirality cholesteric films that operate either exclusively in fluorescent mode or in both fluorescent and reflection mode, respectively. The dual mode display device employing short pitch cholesteric film is able to function on demand under all ambient light conditions including daylight and darkness with fast response and high resolution. Moreover, the proof‐of‐concept for a “remote‐writing board” using cholesteric films containing one of the light‐driven chiral fluorescent molecular switches with ease of fabrication and operation is disclosed herein. Such optically rewritable transparent display devices enabled by light‐driven chiral fluorescent molecular switches pave a new way for developing novel display technology under different lighting conditions.  相似文献   

6.
Self‐organized stimuli‐responsive smart materials with adjustable attributes are highly desirable for a plethora of device applications. Simple cubic lattice is quite uncommon in soft condensed matter due to its lower packing factor. Achieving a stable simple cubic soft lattice and endowing such a lattice with dynamic reconstruction capability solely by a facile light irradiation are of paramount significance for both fundamental studies and engineering explorations. Herein, an elegant stable self‐organized simple cubic soft lattice, i.e., blue phase II, in a chiral liquid crystal (LC) system is disclosed, which is stable down to room temperature and exhibits both reversible lattice deformation and transformation to a helical superstructure, i.e., cholesteric LC, by light stimulation. Such an amazing trait is attained by doping a judiciously designed achiral photoresponsive molecular switch functionalized polyhedral oligomeric silsesquioxane nanocage into a chiral LC host. An unprecedented reversible collapse and reconstruction of such a high symmetric simple cubic blue phase II driven by light has been achieved. Furthermore, a well‐defined conglomerate micropattern composed of simple cubic soft lattice and helical superstructure, which is challenging to fabricate in organic and inorganic crystalline materials, is produced using photomasking technology. Moreover, the promising photonic application based on such a micropattern is demonstrated.  相似文献   

7.
Ultraviolet (UV)‐resonant metals (e.g., aluminum) typically have low melting point to cause a fabrication difficulty in helical sculpture to generate plasmons with chiroptical activity in the UV region. In this work, using glancing angle deposition (GLAD), two new methods are devised to generate crystalline chiral Al nanostructures that have stable chiroptical response in the UV–visible region originating from intrinsic helical structures. One approach involves fast substrate rotation during GLAD to fabricate Al nanoparticles (AlNPs) with hidden helicity; another is to deposit an achiral Al thin film on a host of plasmonic chiral NPs, such that the helical structures are duplicated from the chiral host to the achiral guest of Al nanocappings. The host@guest helicity duplication is a new GLAD methodology to generate chiroptically active plasmons, which can be generally adapted to diverse plasmonic metals for tailoring plasmonic chiroptical activity flexibly in the UV–visible region. More importantly, this work offers those two new methods to generate UV‐active plasmonic chiral substrates, which can markedly enhance chiroptical activity of biomolecules. It would open a door to develop surface‐enhanced chiroptical spectroscopies for sensitively monitoring stereobiochemical information, which is of prominent interest in understanding a wide range of homochirality‐determined biological phenomena.  相似文献   

8.
The fabrication of responsive photonic structures from cellulose nanocrystals (CNCs) that can operate in the entire visible spectrum is challenging due to the requirements of precise periodic modulation of the pitch size of the self‐assembled multilayer structures at the length scale within the wavelength of the visible light. The surface charge density of CNCs is an important factor in controlling the pitch size of the chiral nematic structure of the dried solid CNC films. The assembly of poly(ethylene glycol) (PEG) together with CNCs into smaller chiral nematic domains results in solid films with uniform helical structure upon slow drying. Large, flexible, and flat photonic composite films with uniform structure colors from blue to red are prepared by changing the composition of CNCs and PEG. The CNC/PEG(80/20) composite film demonstrates a reversible and smooth structural color change between green and transparent in response to an increase and decrease of relative humidity between 50% and 100% owing to the reversible swelling and dehydration of the chiral nematic structure. The composite also shows excellent mechanical and thermal properties, complementing the multifunctional property profile.  相似文献   

9.
Poly(phenylacetylene) (PPA) copolymers containing (R)‐ or (S)‐MPA as minor chiral pendant can be forced to selectively adopt the right‐ o left‐handed helix, in the presence of small amounts of Na+ or Ag+ (“Sergeants and Soldiers Effect”) by addition of a donor cosolvent. The helical sense depends exclusively on the chiral monomer/donor cosolvent ratio, and this allows a perfect on/off tuning of the helicity of the copolymer. When the amount of the donor cosolvent is low, the metal ion complex is stabilized by a cation–π interaction, which is selectively cleaved when the amount of cosolvent is higher. Macroscopically chiral nanospheres and nanotubes composed by helical copolymers with P or M helical sense are also described. Our results demonstrate that it is possible to obtain the two enantiomeric helical structures (P and M helicities) and the corresponding nanospheres and nanotubes from a single helical copolymer, by controlled activation/deactivation of the Sergeant and Soldiers Effect with a donor cosolvent.  相似文献   

10.
This paper describes the circularly polarized spectroscopic studies on absorption and emission of an achiral fluorescent dye embedded in cholesteric liquid crystals (CLCs). Optical excitation of the dye-doped CLC cell with a linearly polarized laser brought about the two laser emission peaks at longer and shorter reflection band edges of the CLC host through the internal laser feedback effect of the one-dimensional CLC photonic band-gap. At this stage, the optically excited laser emissions showed circularly polarized characteristic, even though the excitation beam was linearly polarized. The circularly polarized direction of the laser emission was determined by molecular chirality of only few mol% of the enantiomeric chiral dopant in this molecular system.  相似文献   

11.
Different scales of chirality endow a material with many excellent properties and potential applications. In this review, using π‐conjugated molecules as functional building blocks, recent progress on supramolecular helices inspired by biological helicity is summarized. First, induced chirality on conjugated polymers and small molecules is introduced. Molecular chirality can be amplified to nanostructures, superstructures, and even macroscopic structures by a self‐assembly process. Then, the principles for tuning the helicity of supramolecular chirality, as well as formation of helical heterojunctions, are summarized. Finally, the potential applications of chiral structures in chiral sensing and organic electronic devices are critically reviewed. Due to recent progress in chiral structures, an interdisciplinary area called “chiral electronics” is expected to gain wide popularity in the near future.  相似文献   

12.
Creation of color through photonic morphologies manufactured by molecular self-assembly is a promising approach, but the complexity and lack of robustness of the fabrication processes have limited their technical exploitation. Here, it is shown that photonic spheres with full-color tuning across the entire visible spectrum can be readily and reliably achieved by the emulsification of solutions containing a block copolymer (BCP) and two swelling additives. Solvent diffusion out of the emulsion droplets gives rise to 20–150 µm-sized spheres with an onion-like lamellar morphology. Controlling the lamellar thickness by differential swelling with the two additives enables color tuning of the Bragg interference-based reflection band across the entire visible spectrum. By studying five different systems, a set of important principles for manufacturing photonic colloids is established. Two swelling additives are required, one of which must exhibit strong interactions with one of the BCP blocks. The additives should be chosen to enhance the dielectric contrast, and the formation kinetics of the spheres must be sufficiently slow to enable the emergence of the photonic morphology. The proposed approach is versatile and robust and allows the scalable production of photonic pigments with possible future applications in inks for cosmetics and arts, coatings, and displays.  相似文献   

13.
Cholesteric liquid crystal (CLC) chiral superstructures exhibit unique features; that is, polychromatic and spin‐determined phase modulation. Here, a concept for digitalized chiral superstructures is proposed, which further enables the arbitrary manipulation of reflective geometric phase and may significantly upgrade existing optical apparatus. By encoding a specifically designed binary pattern, an innovative CLC optical vortex (OV) processor is demonstrated. Up to 25 different OVs are extracted with equal efficiency over a wavelength range of 116 nm. The multiplexed OVs can be detected simultaneously without mode crosstalk or distortion, permitting a polychromatic, large‐capacity, and in situ method for parallel OV processing. Such complex but easily fabricated self‐assembled chiral superstructures exhibit versatile functionalities, and provide a satisfactory platform for OV manipulation and other cutting‐edge territories. This work is a vital step towards extending the fundamental understanding and fantastic applications of ordered soft matter.  相似文献   

14.
Plasmonic motifs with precise surface recognition sites are crucial for assembling defined nanostructures with novel functionalities and properties. In this work, a unique and effective strategy is successfully developed to pattern DNA recognition sites in a helical arrangement around a gold nanorod (AuNR), and a new set of heterogeneous AuNR@AuNP plasmonic helices is fabricated by attaching complementary‐DNA‐modified gold nanoparticles (AuNPs) to the predesigned sites on the AuNR surface. AuNR is first assembled to one side of a bifacial rectangular DNA origami, where eight groups of capture strands are selectively patterned on the other side. The subsequently added link strands make the rectangular DNA origami roll up around the AuNR into a tubular shape, therefore giving birth to a chiral patterning of DNA recognition sites on the surface of AuNR. Following the hybridization with the AuNPs capped with the complementary strands to the capture strands on the DNA origami, left‐handed and right‐handed AuNR@AuNP helical superstructures are precisely formed by tuning the pattern of the recognition sites on the AuNR surface. Our strategy of nanoparticle surface patterning innovatively realizes hierarchical self‐assembly of plasmonic superstructures with tunable chiroptical responses, and will certainly broaden the horizon of bottom‐up construction of other functional nanoarchitectures with growing complexity.  相似文献   

15.
Light manipulation strategies of nature have fascinated humans for centuries. In particular, structural colors are of considerable interest due to their ability to control the interaction between light and matter. Here, wrinkled photonic crystal papers (PCPs) are fabricated to demonstrate the consistent reflection of colors regardless of viewing angles. The nanoscale molecular self-assembly of a cholesteric liquid crystal (CLC) with a microscale corrugated surface is combined. Fully polymerizable CLC paints are uniaxially coated onto a wrinkled interpenetrating polymer network (IPN) substrate. Photopolymerization of the helicoidal nanostructures results in a flexible and free-standing PCP. The facile method of fabricating the wrinkled PCPs provides a scalable route for the development of novel chirophotonic materials with precisely controlled helical pitch and curvature dimensions. The reflection notch position of the flat PCP shifts to a lower wavelength when the viewing angle increased, while the selective reflection wavelength of wrinkled PCP is remained consistent regardless of viewing angles. The optical reflection of the 1D stripe-wrinkled PCP is dependent on the wrinkle direction. PCPs with different corrugated directions can be patterned to reduce the angular-dependent optical reflection of wrinkles. Furthermore, 2D wavy-wrinkled PCP is successfully developed that exhibit directionally independent reflection of color.  相似文献   

16.
The controlled functionalization of semiconducting 2D materials (2DMs) with photoresponsive molecules enables the generation of novel hybrid structures as active components for the fabrication of high‐performance multifunctional field‐effect transistors (FETs) and memories. This study reports the realization of optically switchable FETs by decorating the surface of the semiconducting 2DMs such as WSe2 and black phosphorus with suitably designed diarylethene (DAE) molecules to modulate their electron and hole transport, respectively, without sacrificing their pristine electrical performance. The efficient and reversible photochemical isomerization of the DAEs between the open and the closed isomer, featuring different energy levels, makes it possible to generate photoswitchable charge trapping levels, resulting in the tuning of charge transport through the 2DMs by alternating illumination with UV and visible light. The device reveals excellent data‐retention capacity combined with multiple and well‐distinguished accessible current levels, paving the way for its use as an active element in multilevel memories.  相似文献   

17.
van Popta AC  Sit JC  Brett MJ 《Applied optics》2004,43(18):3632-3639
Porous dielectric thin films, composed of isolated helical columns, are fabricated by the glancing angle deposition technique. The selective reflection of circularly polarized light and the optical rotation of linearly polarized light are investigated as a function of film material and helical morphology. The strongest chiral optical response is observed for titanium-dioxide films because of its large refractive index. Optical rotatory powers as high as 4.5 degrees are observed in 830-nm-thick helical films. By tailoring the pitch of the helical columns, the wavelength dependence of the circular reflection band is tuned to preferentially reflect red, green, or blue light, a promising quality for display applications.  相似文献   

18.
Color combination of conductive polymers for black electrochromism   总被引:1,自引:0,他引:1  
Conducting polymers that absorb three primary colors, red, green, and blue (RGB), were introduced with a yellow electrochromic polymer (Y) for the preparation of black electrochromic devices. Red poly(3-hexylthiophene) (P3HT) and blue poly(3,4-ethylenedioxythiophene) (PEDOT) were coated on one side of the electrode as a cathodically coloring electrochromic (EC) layer, while green poly(aniline-N-butylsulfonate) (PANBS) and yellow EC poly{[1,3-bis(9',9'-dihexylfluoren-20-yl)azulenyl]-alt-[2",7"-(9",9"-dihexylfluorenyl]} (PDHFA) were coated on the opposite electrode to complete a complementary EC device. The yellow PDHFA layer effectively compensated for absorption below 450 nm and above the 600 nm region, which was lacking in the RGB electrode. The resultant RGBY ECD provided a black color near the CIE black with L*, a*, and b* values of 32, -1.1, and 3.7, respectively, covering a broad absorption in the visible range in the colored state. The state of the black EC device was maintained, even after the electricity was turned off for 200 h, showing stable memory effect.  相似文献   

19.
Self‐assembly of chiral nanostructures is of considerable interest, since the ability to control the chirality of these structures has direct ramifications in biology and materials science. A new approach to design chiral nanostructures from self‐assembly of N‐(9‐fluorenylmethoxycarbonyl)‐protected phenylalanine‐tryptophan‐lysine tripeptides is reported. The terminal charges can induce helical twisting of the assembled β‐sheets, enabling the formation of well‐defined chiral nanostructures. The degree and direction of twisting in the β‐sheets can be precisely tailored through in situ pH and temperature modulations. This enables the assembly of reconfigurable chiral nanomaterials with easily adjustable size and handedness. These results offer new insight into the mechanism of helical twist formation, which may enable the precise assembly of highly dynamical materials with potential applications in biomedicine, chiroptics, and chiral sensing.  相似文献   

20.
Zigzag pattern formation is a common and important phenomenon in nature serving a multitude of purposes. For example, the zigzag‐shaped edge of green leaves boosts the transportation and absorption of nutrients. However, the elucidation of this complicated shape formation is challenging in fluid mechanics and soft condensed matter systems. Herein, a dynamically reconfigurable zigzag pattern deformation of a soft helical superstructure is demonstrated in a photoresponsive self‐organized cholesteric liquid crystal superstructure under the simultaneous influence of an applied electric field and light irradiation. The zigzag‐shaped pattern can not only be generated and terminated repeatedly on demand, but can also be easily manipulated by alternating irradiation of ultraviolet and visible light while under the influence of a sustained electric field. This unique behavior results from a delicate balance among the variable experimental parameters. The evolution of the zigzag‐shaped pattern is successfully modeled by numerical simulations and has been monitored through diffraction of a probe laser. Interestingly, this fascinating zigzag‐shaped pattern yields crescent‐shaped diffraction pattern. The reversibly controllable dynamic zigzag pattern could enable the fabrication of novel photonic devices and architectures, besides greatly advancing the fundamental understanding of temporal behavior of ordered soft materials under combined stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号