首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were performed to highlight the influence of surface wettability on nucleate boiling heat transfer. Nanocoating techniques were used to vary the water contact angle from 20° to 110° by modifying nanoscale surface topography and chemistry. The bubble growth was recorded by a high speed video camera to enable a better understanding of the surface wettability effects on nucleation mechanism. For hydrophilic (wetted) surfaces, it was found that a greater surface wettability increases the vapour bubble departure radius and reduces the bubble emission frequency. Moreover, lower superheat is required for the initial growth of bubbles on hydrophobic (unwetted) surfaces. However, the bubble in contact with the hydrophobic surface cannot detach from the wall and have a curvature radius increasing with time. At higher heat flux, the bubble spreads over the surface and coalesces with bubbles formed at other sites, causing a large area of the surface to become vapour blanketed. The best heat transfer coefficient is obtained with the surface which had a water contact angle close to either 0° or 90°. A new approach of nucleation mechanism is established to clarify the nexus between the surface wettability and the nucleate boiling heat transfer.  相似文献   

2.
ABSTRACT

The pool boiling performance plays a key role in the development of high heat flux dissipating applications. The high critical heat flux and low wall superheat are two of the critical factors that affect the long-term life of devices. In this paper, enhanced pool boiling performance can be achieved by well-designed microchannels in copper surfaces using a precision diamond dicing method. The microchannel patterned surface with the channel length of 0.4 mm obtains a critical heat flux of 169.8 W/cm2, which has a 193% enhancement compared to the plain surface. Besides, the extremely low wall superheat of 3 K has been achieved, and thus the heat transfer coefficient reaches 51.8 W/cm2·K, about 738% larger than that of the plain surface. Herein, the microcavity has increased the nucleation site, the surface can promote the bubbles escape, and then the channel can continuously supply the liquid. Hence, the extremely low wall superheat at high heat flux occurs due to the rapid bubble departure and enhanced capillary feeding of liquid replenishment to active nucleation sites on the surface. The above results provide an effective way for the realization of high-performance two-phase microchannel patterned heat sinks via optimizing the microstructure geometry.  相似文献   

3.
Molecular dynamics simulation is conducted to study the effects of surface wettability on rapid boiling and bubble nucleation over smooth surface. The simple L-J liquid is heated by smooth metal surface with different conditions of wettability in cuboid simulation box. The results show that surface wettability has significant impact on phase transition of liquid film. When the heating temperature is 200 K, the rapid boiling occurs above strongly hydrophilic and weakly hydrophilic surfaces; however, only slow evaporation phenomenon occurs above weakly hydrophobic surface within 2.5-ns simulation time. The reason is that the interaction between argon and platinum atoms is stronger over hydrophilic surface, which has higher efficiency in heat transfer. Furthermore, based on the difference of surface wettability in heat transfer efficiency, the surface with nonuniform wettability is constructed, and the central region is more hydrophilic than surrounding region. The growing process of bubble nucleus can be completely observed above the more hydrophilic region.  相似文献   

4.
A visualization study on the behavior of bubbles has been carried out for pool boiling of R141b on a horizontal transparent heater at pressure 0.1 MPa. The behaviors of bubbles were recorded by a high-speed camera placed beneath the heater surface. The departure diameter, departure time of bubbles and nucleation site density at different heat flux were obtained. The visualization results show that bubble departure diameter and departure time decrease , while the nucleation site density increases as the heat flux increases. It is also observed that there is no liquid recruited into the microlayer in the experiment. Based on the experimental results, boiling curve for R141b was predicted by using the dynamic microlayer model. As a result, the agreement between the predictive result based on the dynamic microlayer model and the experiment data for boiling curve of R141b is good at high heat flux.  相似文献   

5.
Xin Kong  Yueping Deng  Yonghai Zhang 《传热工程》2013,34(17-18):1552-1561
ABSTRACT

The enhancement of pool boiling heat transfer in FC-72 on a novel mixed-wettability surface was experimentally investigated. On the mixed-wettability surface, the micro-pin-finned area and the smooth area were distributed in the form of fractal by using micromaching method (dry etching method). From the comparison with the smooth surface and the micro-pin-finned surface, the mixed-wettability surface could efficiently enhance the heat transfer performance in the nucleate boiling region, and the critical heat flux was also efficiently improved. From the boiling experiment result, it is discovered that a larger heat transfer area does not always lead to a better heat transfer performance. From the peculiar boiling phenomenon of the novel surface, it can be observed that large number of nucleation sites are formed in the micro-pin-finned area, and the small bubbles grow, collide, merge and move rapidly to the nearby smooth channel. When the bubble grows large enough, it will departure quickly under the effect of channel pressure. It can be concluded that the mixed-wettability surface can not only guarantee sufficient nucleation sites, but also facilitate the departure of bubbles and enhance the bubbles' interaction.  相似文献   

6.
Experiments are conducted here to investigate how the channel size affects the subcooled flow boiling heat transfer and associated bubble characteristics of refrigerant R-134a in a horizontal narrow annular duct. The gap of the duct is fixed at 1.0 and 2.0 mm in this study. From the measured boiling curves, the temperature undershoot at ONB is found to be relatively significant for the subcooled flow boiling of R-134a in the duct. The R-134a subcooled flow boiling heat transfer coefficient increases with a reduction in the gap size, but decreases with an increase in the inlet liquid subcooling. Besides, raising the imposed heat flux can cause a substantial increase in the subcooled boiling heat transfer coefficient. However, the effects of the refrigerant mass flux and saturated temperature on the boiling heat transfer coefficient are small in the narrow duct. Visualization of the subcooled flow boiling processes reveals that the bubbles are suppressed to become smaller and less dense by raising the refrigerant mass flux and inlet subcooling. Moreover, raising the imposed heat flux significantly increases the bubble population, coalescence and departure frequency. The increase in the bubble departure frequency by reducing the duct size is due to the rising wall shear stress of the liquid flow, and at a high imposed heat flux many bubbles generated from the cavities on the heating surface tend to merge together to form big bubbles. Correlation for the present subcooled flow boiling heat transfer data of R-134a in the narrow annular duct is proposed. Additionally, the present data for some quantitative bubble characteristics such as the mean bubble departure diameter and frequency and the active nucleation site density are also correlated.  相似文献   

7.
Experiments are conducted here to investigate how the channel size affects the R-407C saturated flow boiling heat transfer and associated bubble characteristics in a horizontal narrow annular duct. The gap of the duct is fixed at 1.0 and 2.0 mm in this study. The measured data indicate that the saturated flow boiling heat transfer coefficient increases with a decrease in the duct gap. Besides, raising the imposed heat flux can cause a significant increase in the boiling heat transfer coefficients. However, the effects of the refrigerant mass flux and saturated temperature on the boiling heat transfer coefficient are milder. The results from the flow visualization show that the mean diameter of the bubbles departing from the heating surface decreases noticeably at increasing R-407C mass flux. Moreover, the bubble departure frequency increases at reducing duct size and at a high imposed heat flux many bubbles generated from the cavities in the heating surface tend to merge together to form big bubbles. Meanwhile comparison of the present heat transfer data for R-407C with R-134a in the same duct and with some existing correlations is conducted. Furthermore, correlation for the present R-407C saturated flow boiling heat transfer data is proposed. Additionally, the present data for some quantitative bubble characteristics such as the mean bubble departure diameter and frequency and the active nucleation site density are also correlated.  相似文献   

8.
Experiments are conducted here to investigate how the channel size affects the saturated flow boiling heat transfer and associated bubble characteristics of refrigerant R-134a in a horizontal narrow annular duct. The gap of the duct is fixed at 1.0 and 2.0 mm in this study. The measured heat transfer data indicate that the saturated flow boiling heat transfer coefficient increases with a decrease in the gap of the duct. Besides, raising the imposed heat flux can cause a significant increase in the boiling heat transfer coefficients. However, the effects of the refrigerant mass flux and saturated temperature on the boiling heat transfer coefficient are milder. The results from the flow visualization show that the mean diameter of the bubbles departing from the heating surface decreases slightly at increasing R-134a mass flux. Moreover, the bubble departure frequency increases at reducing duct size mainly due to the rising shear stress of the liquid flow, and at a high imposed heat flux many bubbles generated from the cavities in the heating surface tend to merge together to form big bubbles. Correlation for the present saturated flow boiling heat transfer data of R-134a in the narrow annular duct is proposed. Additionally, data for some quantitative bubble characteristics such as the mean bubble departure diameter and frequency and the active nucleation site density are also correlated.  相似文献   

9.
This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography and chemistry. Experimental results show that critical heat flux (CHF) values are higher in the hydrophilic region. Conversely, CHF values are lower in the hydrophobic region. The experimental CHF data of the modified surface do not fit the classical models. Therefore, this study proposes a simple model to build the nexus between the surface wettability and the growth of bubbles on the heating surface.  相似文献   

10.
Spatiotemporal cooling of electronics using latent energy might be achieved by closely spaced, rapid departure of small bubbles. One means to achieve small diameters during boiling is to provide an additional upward force during bubble formation, such as that from vapor extraction. Experiments were conducted of bubble extraction using constant flow rates of both air and vapor that ranged from 30 to 90 mm3/s. Extraction was achieved with a hydrophobic porous membrane sealed to a tube in which a vacuum was drawn. The gap between the extraction and supply surface was varied from 0.5 to 3.25 mm. Only individual bubbles that ruptured at the top surface while still attached to the supply surface were considered. Bubble departure diameters are approximately 80% of the gap height. As with unconfined bubbles in pool boiling, the bubble frequency varies inversely with departure diameter. Correlations for bubble rupture, bubble departure, and bubble frequency are presented as a function of gap height. Using the three distinct regimes identified in the experimental study, namely, growth only, growth with extraction, and extraction only, an effective bubble diameter model and an appropriate static force balance were developed. These were used to predict bubble departure frequencies and diameters, respectively, under confined extraction conditions.  相似文献   

11.
In order to investigate the effect of surface wettability on the pool boiling heat transfer, nucleate pool boiling experiments were conducted with deionized water and silica based nanofluid. A higher surface roughness value in the range of 3.9 ~ 6.0μm was tested. The contact angle was from 4.7° to 153°, and heat flux was from 30kW/m2 to 300kW/m2. Experimental results showed that hydrophilicity diminish the boiling heat transfer of silica nanofluid on the surfaces with higher roughness. As the increment of nanofluid mass concentration from 0.025% to 0.1%, a further reduction of heat transfer coefficient was observed. For the super hydrophobic surface with higher roughness (contact angle 153.0°), boiling heat transfer was enhanced at heat flux less than 93 kW/m2, and then the heat transfer degraded at higher heat flux.  相似文献   

12.
High-speed video and infrared thermometry were used to obtain time- and space-resolved information on bubble nucleation and heat transfer in pool boiling of water. The bubble departure diameter and frequency, growth and wait times, and nucleation site density were directly measured for a thin, electrically-heated, indium–tin-oxide surface, laid on a sapphire substrate. These data are very valuable for validation of two-phase flow and heat transfer models, including computational fluid dynamics with interface tracking methods. Here, detailed experimental bubble-growth data from individual nucleation sites were used to evaluate simple, commonly-used, but poorly-validated, bubble-growth and nucleate-boiling heat-transfer models. The agreement between the data and the models was found to be reasonably good. Also, the heat flux partitioning model, to which our data on nucleation site density, bubble departure diameter and frequency were directly fed, suggests that transient conduction following bubble departure is the dominant contribution to nucleate-boiling heat transfer.  相似文献   

13.
In this paper, an experiment was performed which is based on a heating surface consisting of microheaters where the temperature of each heater can be individually controlled by an electronic feedback loop. The power consumed by the heaters throughout the cycle of individual bubble growth, coalescence, detachment and departure was measured at high frequencies, thus the heat flux and its variation were obtained. By a careful timing and control of two individual microheaters, we were able to produce two individual bubbles side-by-side. The coalescence would takes place when they grow to a certain size that allows them to touch each other. We have recorded two major heat flux spikes for a typical cycle of boiling with coalescence. The first one corresponds to the nucleation of bubbles; the second one is for the coalescence of the two bubbles. We found that the heat flux variation is closely related to the bubble dynamics and bubble-bubble interaction. By comparing with the single bubble results without coalescence, we also found that the heat transfer is highly enhanced due to the coalescence.  相似文献   

14.
Wall boiling and bubble population balance equations combined with a two-fluid model are employed to predict boiling two-phase flow in an inclined channel with a downward-facing heated upper wall. In order to observe the boiling behavior on the inclined, downward-facing heated wall, a visualization experiment was carried out with a 100 mm × 100 mm of the cross section, 1.2-m-long rectangular channel, inclined by 10° from the horizontal plane. The size of the heated wall was 50 mm by 750 mm and the heat flux was provided by Joule heating using DC electrical current. The temperatures of the heater surface were measured and used in calculating heat transfer coefficients. The wall superheat for 100 kW/m2 heat flux and 200 kg/m2s mass flux ranged between 9.3°C and 15.1°C. High-speed video images showed that bubbles were sliding, continuing to grow, and combining with small bubbles growing at their nucleation sites in the downstream. Then large bubbles coalesced together when the bubbles grew too large to have a space between them. Finally, an elongated slug bubble formed and it continued to slide along the heated wall. For these circumstances of wall boiling and two-phase flow in the inclined channel, the existing wall boiling model encompassing bubble growth and sliding was improved by considering the influence of large bubbles near the heated wall and liquid film evaporation under the large slug bubbles. With this improved model, the predicted wall superheat agreed well with the experimental data, while the RPI model largely overpredicted the wall superheat.  相似文献   

15.
An experiment is carried out here to investigate flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-finned silicon chip flush-mounted in the bottom of a horizontal rectangular channel. Besides, three different micro-structures of the chip surface are examined, namely, the smooth, pin-finned 200 and pin-finned 100 surfaces. The pin-finned 200 and 100 surfaces, respectively, contain micro-pin-fins of size 200 μm × 200 μm × 70 μm (width × length × height) and 100 μm × 100 μm × 70 μm. The pitch of the fins is equal to the fin width for both surfaces. The effects of the FC-72 mass flux, imposed heat flux, and surface micro-structures of the silicon chip on the FC-72 saturated flow boiling characteristics are examined in detail. The experimental data show that an increase in the FC-72 mass flux causes a delay in the boiling incipience. However, the flow boiling heat transfer coefficient is not affected by the coolant mass flux. But adding the micro-pin-fin structures to the chip surfaces can effectively enhance the single-phase convection and flow boiling heat transfer. Moreover, the mean bubble departure diameter and active nucleation site density are reduced for a rise in the FC-72 mass flux. A higher coolant mass flux results in a higher mean bubble departure frequency. Furthermore, larger bubble departure diameter, higher bubble departure frequency, and higher active nucleation site density are observed at a higher imposed heat flux. We also note that adding the micro-pin-fins to the chips decrease the bubble departure diameter and increase the bubble departure frequency. However, the departing bubbles are larger for the pin-finned 100 surface than the pin-finned 200 surface but the bubble departure frequency exhibits an opposite trend. Finally, empirical equations to correlate the present data for the FC-72 single-phase liquid convection and saturated flow boiling heat transfer coefficients and for the bubble characteristics are provided.  相似文献   

16.
An experiment is conducted here to investigate how the channel size affects the subcooled flow boiling heat transfer and the associated bubble characteristics of refrigerant R-407C in a horizontal narrow annular duct with the gap of the duct fixed at 1.0 and 2.0 mm. The measured boiling curves indicate that the temperature overshoot at ONB is relatively significant for the subcooled flow boiling of R-407C in the duct. Besides, the subcooled flow boiling heat transfer coefficient increases with a reduction in the duct gap, but decreases with an increase in the inlet liquid subcooling. Moreover, raising the heat flux imposed on the duct can cause a significant increase in the boiling heat transfer coefficients. However, the effects of the refrigerant mass flux and saturated temperature on the boiling heat transfer coefficient are slighter. Visualization of the subcooled flow boiling processes in the duct reveals that the bubbles are suppressed to become smaller and less dense by raising the refrigerant mass flux and inlet subcooling. Raising the imposed heat flux, however, produces positive effects on the bubble population, coalescence and departure frequency. Meanwhile, the present heat transfer data for R-407C are compared with the R-134a data measured in the same duct and with some existing correlations. We also propose empirical correlations for the present data for the R-407C subcooled flow boiling heat transfer and some quantitative bubble characteristics such as the mean bubble departure diameter and frequency and the active nucleation site density.  相似文献   

17.
Experiments are conducted here to investigate how the channel size affects the R-410A saturated flow boiling heat transfer and associated bubble characteristics in a horizontal narrow annular duct. The gap of the duct is fixed at 1.0 and 2.0 mm in this study. The measured data indicate that the saturated flow boiling heat transfer coefficient increases with increasing refrigerant mass flux and saturated temperature and with a decrease in the gap size. Besides, raising the imposed heat flux can cause a significant increase in the boiling heat transfer coefficient. The results from the flow visualization show that the mean diameter of the bubbles departing from the heating surface decreases slightly with increasing refrigerant mass flux and saturated temperature. Moreover, the bubble departure frequency increases at reducing duct size and increasing mass flux. And at a high imposed heat flux many bubbles generated from the cavities in the heating surface tend to merge together to form big bubbles. Meanwhile, comparisons of the present heat transfer data for R-410A with R-407C and R-134a in the same duct and with some existing correlations are conducted. Furthermore, an empirical correlation for the present R-410A saturated flow boiling heat transfer data is proposed.  相似文献   

18.
Subcooled flow boiling heat transfer characteristics of refrigerant R-134a in a vertical plate heat exchanger (PHE) are investigated experimentally in this study. Besides, the associated bubble characteristics are also inspected by visualizing the boiling flow in the vertical PHE. In the experiment two vertical counterflow channels are formed in the exchanger by three plates of commercial geometry with a corrugated sinusoidal shape of a chevron angle of 60°. Upflow boiling of subcooled refrigerant R-134a in one channel receives heat from the downflow of hot water in the other channel. The effects of the boiling heat flux, refrigerant mass flux, system pressure and inlet subcooling of R-134a on the subcooled boiling heat transfer are explored in detail. The results are presented in terms of the boiling curves and heat transfer coefficients. The measured data showed that the slopes of the boiling curves change significantly during the onset of nucleate boiling (ONB) especially at low mass flux and high saturation temperature. Besides, the boiling hysteresis is significant at a low refrigerant mass flux. The subcooled boiling heat transfer coefficient is affected noticeably by the mass flux of the refrigerant. However, increases in the inlet subcooling and saturation temperature only show slight improvement on the boiling heat transfer coefficient.The photos from the flow visualization reveal that at higher imposed heat flux the plate surface is covered with more bubbles and the bubble generation frequency is substantially higher, and the bubbles tend to coalesce to form big bubbles. But these big bubbles are prone to breaking up into small bubbles as they move over the corrugated plate, producing strong agitating flow motion and hence enhancing the boiling heat transfer. We also note that the bubbles nucleated from the plate are suppressed to a larger degree for higher inlet subcooling and mass flux. Finally, empirical correlations are proposed to correlate the present data for the heat transfer coefficient and the bubble departure diameter in terms of boiling, Froude, Reynolds and Jakob numbers.  相似文献   

19.
An analytical model of heat transfer based on evaporation from the micro and macrolayers to the vapor bubble during pool boiling is developed. Evaporation of microlayer and macrolayer during the growth of individual bubbles is taken care of by using temporal and spatial variation of temperature in the liquid layer. Change of bubble shape during the entire cycle of bubble growth and departure is meticulously considered to find out the rate of heat transfer from the solid surface to the boiling liquid. Continuous boiling curve is developed by considering the bubble dynamics and decreasing thickness of liquid layer along with the increase of dry spot radius. Transient variation of macrolayer and microlayer thickness is predicted along with their effect on CHF. Present model exhibits a good agreement with reported experimental data as well as theories.  相似文献   

20.
An experiment is conducted here to investigate the effects of the imposed time periodic refrigerant flow rate oscillation in the form of nearly a triangular wave on refrigeriant R-134a flow boiling heat transfer and associated bubble characteristics in a horizontal narrow annular duct with the duct gap fixed at 2.0 mm. The results indicate that when the imposed heat flux is close to that for the onset of stable flow boiling, intermittent flow boiling appears in which nucleate boiling on the heated surface does not exist in an entire periodic cycle. At somewhat higher heat flux persistent boiling prevails. Besides, the refrigerant flow rate oscillation only slightly affects the time-average boiling curves and heat transfer coefficients. Moreover, the heated wall temperature, bubble departure diameter and frequency, and active nucleation site density are found to oscillate periodically in time as well and at the same frequency as the imposed mass flux oscillation. Furthermore, in the persistent boiling the resulting heated wall temperature oscillation is stronger for a longer period and a larger amplitude of the mass flux oscillation. And for a larger amplitude of the mass flux oscillation, stronger temporal oscillations in the bubble characteristics are noted. The effects of the mass flux oscillation on the size of the departing bubble and active nucleation site density dominate over the bubble departure frequency, causing the heated wall temperature to decrease and heat transfer coefficient to increase at reducing mass flux in the flow boiling, opposing to that in the single-phase flow. But they are only mildly affected by the period of the mass flux oscillation. However, a short time lag in the wall temperature oscillation is also noted. Finally, a flow regime map is provided to delineate the boundaries separating different boiling regimes for the R-134a flow boiling in the annular duct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号