首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Topotactic phase transformation enables structural transition without losing the crystalline symmetry of the parental phase and provides an effective platform for elucidating the redox reaction and oxygen diffusion within transition metal oxides. In addition, it enables tuning of the emergent physical properties of complex oxides, through strong interaction between the lattice and electronic degrees of freedom. In this communication, the electronic structure evolution of SrFeOx epitaxial thin films is identified in real‐time, during the progress of reversible topotactic phase transformation. Using real‐time optical spectroscopy, the phase transition between the two structurally distinct phases (i.e., brownmillerite and perovskite) is quantitatively monitored, and a pressure–temperature phase diagram of the topotactic transformation is constructed for the first time. The transformation at relatively low temperatures is attributed to a markedly small difference in Gibbs free energy compared to the known similar class of materials to date. This study highlights the phase stability and reversibility of SrFeOx thin films, which is highly relevant for energy and environmental applications exploiting the redox reactions.  相似文献   

2.
3.
Promoting the initially deficient but economical catalysts to high-performing competitors is important for developing superior catalysts. Unlike traditional nano-morphology construction methods, this work focuses on intrinsic catalytic activity enhancement via heteroatom doping strategies to induce lattice distortion and optimize spin-dependent orbital interaction to alter charge transfer between catalysts and reactants. Experimentally, a series of different concentrations of fluorine-doped lanthanum cobaltate (Fx-LaCoO3) exhibiting excellent electrocatalytic activity is synthesized, including a low overpotential of 390 mV at j = 10 mA cm−2 for OER and a large half-wave potential of 0.68 V for ORR. Meanwhile, the assembled rechargeable Zn–air batteries deliver an excellent performance with a large specific capacity of 811 mAh/gZn under 10 mA cm−2 and stability of charge/recharge (120 h). Theoretically, taking advantage of density functional theory calculations, it is found that the prominent OER/ORR performance arises from the spin state transition of Co3+ (Low spin state (LS, t2g6eg0) → Intermediate spin state (IS, t2g5eg1) and the mediated d-band center upshift by F atom incorporation. This work establishes a novel avenue for designing superior electrocatalysts in perovskite-based oxides by regulating spin states.  相似文献   

4.
氧化钒薄膜的结构、性能及制备技术的相关性   总被引:12,自引:0,他引:12  
氧化钒薄膜及其在微电子和光电子领域中的已成为国际上新颖的功能材料研究的热点之一。本文综述了V2O5和VO2薄膜电学性能与薄膜组分的结构的相关性,比较了不同工艺制备的氧化钒薄膜的电学性能差异。  相似文献   

5.
6.
The ex-solution phenomenon, a central platform for growing metal nanoparticles on the surface of host oxides in real time with high durability and a fine distribution, has recently been applied to various scientific and industrial fields, such as catalysis, sensing, and renewable energy. However, the high-temperature processing required for ex-solutions (>700 °C) limits the applicable material compositions and has hindered advances in this technique. Here, an unprecedented approach is reported for low-temperature particle ex-solution on important nanoscale binary oxides. WO3 with a nanosheet structure is selected as the parent oxide, and Ir serves as the active metal species that produces the ex-solved metallic particles. Importantly, Ir doping facilitates a phase transition in the WO3 bulk lattice, which further promotes Ir ex-solution at the oxide surface and eventually enables the formation of Ir particles (<3 nm) at temperatures as low as 300 °C. Low-temperature ex-solution effectively inhibits the agglomeration of WO3 sheets while maintaining well-dispersed ex-solved particles. Furthermore, the Ir-decorated WO3 sheets show excellent durability and H2S selectivity when used as sensing materials, suggesting that this is a generalizable synthetic strategy for preparing highly robust heterogeneous catalysts for a variety of applications.  相似文献   

7.
Layered materials with phase transitions, such as charge density wave (CDW) and magnetic and dipole ordering, have potential to be exfoliated into monolayers and few‐layers and then become a large and important subfamily of two‐dimensional (2D) materials. Benefitting from enriched physical properties from the collective interactions, long‐range ordering, and related phase transitions, as well as the atomic thickness yet having nondangling bonds on the surface, 2D phase‐transition materials have vast potential for use in new‐concept and functional devices. Here, potential 2D phase‐transition materials with CDWs and magnetic and dipole ordering, including transition metal dichalcogenides, transition metal halides, metal thio/selenophosphates, chromium silicon/germanium tellurides, and more, are introduced. The structures and experimental phase‐transition properties are summarized for the bulk materials and some of the obtained monolayers. In addition, recent experimental progress on the synthesis and measurement of monolayers, such as 1T‐TaS2, CrI3, and Cr2Ge2Te6, is reviewed.  相似文献   

8.
9.
Systematics in the electrical and magnetic properties of transition metal perovskites LnBO3 (Ln=rare-earth ion, B=3d transition metal) with the variation of Ln and B ions are reviewed. The electrical resistivity and activation energy of LnBO3 compounds increase with the decreasing size of the Ln3+ ion for a given B ion. The low-spin to high-spin transition temperature of Co3+ ion in LnCoO3 similarly increases with the decrease in size of Ln3+ while the magnetic ordering temperatures in LnVO3, LnFeO3, LnCrO3 and LnSrCo2O6 decreases with decreasing size of the rare-earth ion. These results may be understood in terms of the increasing acidity of the rare earth ion with decreasing size and the competition between the Ln3+ and the B3+ ions for covalency with the oxygen ions. The effect of this competition on the metal oxygen covalency and crystal field parameter is discussed in relation to the results obtained and Goodenough’s phase diagram. The possibility ofd-f exchange interaction in La1−xLnx NiO3 is also discussed in the light of ESR results. Communication No. 66 from the Solid State and Structural Chemistry Unit.  相似文献   

10.
11.
以石墨烯为代表的具有层状结构的二维材料因具有大比表面积等特性成为超级电容器电极材料的热门候选.文章着眼于针对诸如石墨烯、过渡金属二硫族化合物、过渡金属碳/氮化物、层状过渡金属氧化物/氢氧化物等二维材料在超级电容器领域应用的研究,尝试总结了其制备方法、产物形貌特征以及作为电极的性能等,并对这一领域的未来发展和面临的挑战提出了看法与预测.  相似文献   

12.
张玮倩  许秀玲  周国伟 《材料导报》2018,32(21):3731-3736, 3759
二元及三元过渡金属氧化物由于其优异的物理和化学特性,在电化学领域得到了广泛的应用。本文主要介绍了不同元素组成的二元及三元过渡金属氧化物,以及通过不同制备方法得到的空心球状、管状、片状、立方体、棒状、针状、伞形等多种不同形貌的二元及三元过渡金属氧化物;总结了二元及三元过渡金属氧化物在超级电容器、锂离子电池和传感器领域中表现出的优异性能;最后对二元及三元过渡金属氧化物的应用前景进行了展望。  相似文献   

13.
14.
Ultrathin transition metal dichalcogenides (TMDs) have exotic electronic properties. With success in easy synthesis of high quality TMD thin films, the potential applications will become more viable in electronics, optics, energy storage, and catalysis. Synthesis of TMD thin films has been mostly performed in vacuum or by thermolysis. So far, there is no solution phase synthesis to produce large‐area thin films directly on target substrates. Here, this paper reports a one‐step quick synthesis (within 45–90 s) of TMD thin films (MoS2, WS2, MoSe2, WSe2, etc.) on solid substrates by using microwave irradiation on a precursor‐containing electrolyte solution. The numbers of the quintuple layers of the TMD thin films are precisely controllable by varying the precursor's concentration in the electrolyte solution. A photodetector made of MoS2 thin film comprising of small size grains shows near‐IR absorption, supported by the first principle calculation, exhibits a high photoresponsivity (>300 mA W?1) and a fast response (124 µs). This study paves a robust way for the synthesis of various TMD thin films in solution phases.  相似文献   

15.
以石墨烯为代表的具有层状结构的二维材料因具有大比表面积等特性成为超级电容器电极材料的热门候选。文章着眼于针对诸如石墨烯、过渡金属二硫族化合物、过渡金属碳/氮化物、层状过渡金属氧化物/氢氧化物等二维材料在超级电容器领域应用的研究,尝试总结了其制备方法、产物形貌特征以及作为电极的性能等,并对这一领域的未来发展和面临的挑战提出了看法与预测。  相似文献   

16.
During the last few years, transition metal oxides (TMO) such as molybdenum tri‐oxide (MoO3), vanadium pent‐oxide (V2O5) or tungsten tri‐oxide (WO3) have been extensively studied because of their exceptional electronic properties for charge injection and extraction in organic electronic devices. These unique properties have led to the performance enhancement of several types of devices and to a variety of novel applications. TMOs have been used to realize efficient and long‐term stable p‐type doping of wide band gap organic materials, charge‐generation junctions for stacked organic light emitting diodes (OLED), sputtering buffer layers for semi‐transparent devices, and organic photovoltaic (OPV) cells with improved charge extraction, enhanced power conversion efficiency and substantially improved long term stability. Energetics in general play a key role in advancing device structure and performance in organic electronics; however, the literature provides a very inconsistent picture of the electronic structure of TMOs and the resulting interpretation of their role as functional constituents in organic electronics. With this review we intend to clarify some of the existing misconceptions. An overview of TMO‐based device architectures ranging from transparent OLEDs to tandem OPV cells is also given. Various TMO film deposition methods are reviewed, addressing vacuum evaporation and recent approaches for solution‐based processing. The specific properties of the resulting materials and their role as functional layers in organic devices are discussed.  相似文献   

17.
18.
Lithium phosphorus oxynitride (LiPON) thin films as solid electrolytes were prepared by reactive radio frequency (rf) magnetron sputtering from Li3PO4 powder compact target. High deposition rates and ease of manufacturing powder target compared with conventional ceramic Li3PO4 targets offer flexibility in handling and reduce the cost associated. Rf power density varied from 1.7 Wcm− 2 to 3 Wcm− 2 and N2 flow from 10 to 30 sccm for a fixed substrate to target distance of 4 cm for best ionic conductivity. The surface chemical analysis done by X-ray photoelectron spectroscopy showed incorporation of nitrogen into the film as both triply, Nt and doubly, Nd coordinated form. With increased presence of Nt, ionic conductivity of LiPON was found to be increasing. The electrochemical impedance spectroscopy of LiPON films confirmed an ionic conductivity of 1.1 × 10− 6 Scm− 1 for optimum rf power and N2 flow conditions.  相似文献   

19.
20.
The practical scale‐up of renewable energy technologies will require catalysts that are more efficient and durable than present ones. This is, however, a formidable challenge that will demand a new capability to tailor the electronic structure. Here, an original electronic structure tailoring of CoO by Ni and Zn dual doping is reported. This changes it from an inert material into one that is highly active for the hydrogen evolution reaction (HER). Based on combined density functional theory calculations and cutting‐edge characterizations, it is shown that dual Ni and Zn doping is responsible for a highly significant increase in HER activity of the host oxide. That is, the Ni dopants cluster around surface oxygen vacancy of the host oxide and provide an ideal electronic surface structure for hydrogen intermediate binding, while the Zn dopants distribute inside the host oxide and modulate the bulk electronic structure to boost electrical conduction. As a result, the dual‐doped Ni, Zn CoO nanorods achieve current densities of 10 and 20 mA cm?2 at overpotentials of, respectively, 53 and 79 mV. This outperforms reported state‐of‐the‐art metal oxide, metal oxide/metal, metal sulfide, and metal phosphide catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号