首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uniform and vertically aligned nanocone and nanopillar arrays were successfully constructed on heavily boron-doped nanocrysatlline diamond films by carrying out bias-assisted reactive ion etching in hydrogen/argon plasmas. The electrochemical properties of the nanostructured boron-doped diamond films were investigated by cyclic voltammetry using 1 mM [Fe(CN)6](3-/4-) as redox couple. Compared to the planar boron-doped nanocrystalline diamond film electrode, the surface nanostructuring of boron-doped diamond film electrodes demonstrate enhanced sensitivity due to their enlarged electro-active surface areas. The results indicated that boron-doped diamond nanocones and nanopillars are promising electrode materials which benefit to improve the efficiency, sensitivity and reproducibility of biomedical and chemical sensors.  相似文献   

2.
We explore a novel phenomenon of focused ion beam (FIB) induced bending of carbon nanopillars or cantilever structures. The bending occurs towards the ion beam during scanning. The explanation of this bending has been sought on the basis of a model which considers temperature rise and gradients caused by the impinging ion beam. The process is controllable and reversible, which makes it highly suitable for in?situ manipulation to make desired 3D shapes by the piecewise bending of the nanopillars and cantilever structures during their fabrication using electron beam or FIB chemical vapor deposition (EB-CVD or FIB-CVD). Its usefulness in the fabrication of nanosize mechanical components has been demonstrated by making a branch structure from a single cantilever.  相似文献   

3.
The etching characteristics of single crystal diamond chips processed using an oxygen ion beam with reactive oxygen gas flux were investigated. The specific etching rate increased linearly with increasing ion energy in the range of 250 to 1000 eV. The specific etching rates processed in a 1000-eV oxygen ion beam with oxygen gas was approximately twice that processed only in a 1000-eV oxygen ion beam. The angular dependences of only a 500-eV oxygen ion beam (no assist), and a 500-eV argon ion beam with oxygen gas were quite different from that of the other conditions. The specific etching rates were almost constant as a function of ion incident angle in the range of 0 to 50°. Those for the other conditions first increased with increasing ion incident angle, and reached a maximum rate at an ion incident angle of 40° or 50°, and then decreased gradually with further increase in ion incident angle. The specific etching rates using an argon ion beam with oxygen gas first increased with increasing gas partial pressure and then reached a saturation level at a gas partial pressure above 0.015 Pa, whereas those for the other conditions increased linearly with increasing gas partial pressure in the range of 0 to 0.06 Pa. The specific etching rates using an oxygen ion beam increased linearly with increasing substrate temperature in the range of 100 to 500 °C. The specific surface roughness was almost constant as a function of the substrate temperature, in the range of 100 to 500 °C. The specific surface roughness after assisted etching using oxygen or hydrogen gases was approximately half that processed in only oxygen or argon ion beams (no assist). © 2001 Kluwer Academic Publishers  相似文献   

4.
Polycrystalline diamond thin film has been grown on a silicon substrate using high pressure microwave plasma-assisted chemical vapor deposition from a gas mixture of methane and hydrogen at a substrate temperature of 950°C. A simple process flow has been developed to fabricate optically transparent polycrystalline synthetic diamond membranes/windows employing reactive ion etching (RIE) of a single crystal silicon substrate using an electron beam evaporated aluminum thin film mask pattern formed by photolithography. Scanning electron microscopy has been used to study the morphology of as-grown diamond thin films.  相似文献   

5.
Diamond is an attractive material for photonic quantum technologies because its colour centres have a number of outstanding properties, including bright single photon emission and long spin coherence times. To take advantage of these properties it is favourable to directly fabricate optical microcavities in high-quality diamond samples. Such microcavities could be used to control the photons emitted by the colour centres or to couple widely separated spins. Here, we present a method for the fabrication of one- and two-dimensional photonic crystal microcavities with quality factors of up to 700 in single crystal diamond. Using a post-processing etching technique, we tune the cavity modes into resonance with the zero phonon line of an ensemble of silicon-vacancy colour centres, and we measure an intensity enhancement factor of 2.8. The controlled coupling of colour centres to photonic crystal microcavities could pave the way to larger-scale photonic quantum devices based on single crystal diamond.  相似文献   

6.
A method to achieve deep and crystal cut-independent structuring of arbitrary lateral geometry in single crystalline quartz is demonstrated. It is based on local etching of the latent track-induced anisotropy resulting from heavy ion bombardment, and is close to independent of crystallographic orientation. Previous results are briefly reviewed and a more systematic and thorough study is presented. Miniature tuning fork structures of various sizes and directions have been realized, and the suitability for frequency control device production is discussed  相似文献   

7.
This paper deals with an investigation of the effect of crystallographic orientation and process parameters on the surface roughness of brittle silicon single crystals in ultraprecision diamond turning. The process parameters involve the depth of cut, feed rate, and spindle speed. Experimental results indicate that anisotropy in surface finish occurs when the cutting direction relative to the crystal orientation varies. There exists a periodic variation of surface roughness per workpiece revolution, which is closely related to the crystallographic orientation of the crystals being cut. Such an anisotropy of surface roughness can be minimized with an appropriate selection of the feed rate, spindle speed, and depth of cut. The findings provide a means for the optimization of the surface quality in diamond turning of brittle silicon single crystals.  相似文献   

8.
Diamond is known to possess a range of extraordinary properties that include exceptional mechanical stability. In this work, it is demonstrated that nanoscale diamond pillars can undergo not only elastic deformation (and brittle fracture), but also a new form of plastic deformation that depends critically on the nanopillar dimensions and crystallographic orientation of the diamond. The plastic deformation can be explained by the emergence of an ordered allotrope of carbon that is termed O8-carbon. The new phase is predicted by simulations of the deformation dynamics, which show how the sp3 bonds of (001)-oriented diamond restructure into O8-carbon in localized regions of deforming diamond nanopillars. The results demonstrate unprecedented mechanical behavior of diamond, and provide important insights into deformation dynamics of nanostructured materials.  相似文献   

9.
The subject of this work is focused on characterization of the microstructures and orientations of SiC crystals synthesized in diamond–SiC–Si composites using reactive microwave sintering. The SiC crystals grown on the surfaces of diamonds have either shapes of cubes or hexagonal prisms, dependent on crystallographic orientation of diamond. The selection of a specified plane in diamond lattice for the TEM investigations enabled a direct comparison of SiC orientations against two types of diamond facets. On the {111} diamond faces a 200 nm layer of 30–80 nm flat β-SiC grains was found having a semi-coherent interface with diamond at an orientation: (111)[112]SiC║(111)[110]C. On the {100} diamond faces β-SiC forms a 300 nm intermediate layer of 20–80 nm grains and an outer 1.2 µm layer on top of it. Surprisingly, the SiC lattice of the outer layer is aligned with the diamond lattice: (111)[110]SiC║(111)[110]C.  相似文献   

10.
R. Kaliasas 《Thin solid films》2012,520(6):2041-2045
Nanodot and nanopillar structures and precisely controlled reproducible fabrication thereof are of great interest in common nanoelectronic devices, including photonic crystals and surface plasmon resonance instruments. In this work, fabrication process of the silicon nanopillar structures is described. It includes self-organization of gold and chromium clusters at thickness close to that of one atomic diameter to serve as etching masks followed by the reactive ion etching to form silicon nanopillars. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize self-organized gold and chromium clusters as well as the final silicon nanopillars. This method was found to produce silicon nanopillars of sub-10 nm lateral dimensions and the diameter-to-height aspect ratio of up to 1:14.  相似文献   

11.
An investigation of the characteristics of microcutting forces in diamond turning of crystalline materials is presented. The characteristics of the cutting forces were extracted and analyzed using statistical and spectrum analysis methods. A series of cutting experiments were done on a copper alloy and copper single crystals with different crystallographic orientations. Experimental results indicate that there exists a dominant frequency component and a periodicity of fluctuation of the cutting forces per workpiece revolution in the diamond turning of a single crystal material. The periodicity is closely related to the crystallographic orientation of the material being cut. As the depth of cut increases, the influence of crystallographic orientation of the single-crystal materials on microcutting forces is found to be more pronounced. Moreover, the cutting force ratio between the mean thrust force and the mean cutting force is found to vary with the depth of cut, and a large ratio was observed at a small depth of cut. These findings help to explain quantitatively the periodic fluctuations of microcutting forces (and hence the materials-induced vibration) in ultraprecision diamond turning, which are not encountered in conventional machining.  相似文献   

12.
为了探究稀土氧化物对合成金刚石单晶的各向异性刻蚀,在氮气保护下,在750~950℃内用Pr_(6)O_(11)对合成金刚石单晶进行刻蚀。采用扫描电子显微分析、热重分析、X射线衍射和拉曼光谱等技术对刻蚀后金刚石单晶不同晶面的表面形貌、物相组成和刻蚀机理进行表征与分析。采用最大刻蚀深度、单颗粒抗压强度和冲击韧性来表征刻蚀前后金刚石性能的变化。结果表明:Pr_(6)O_(11)对金刚石{100}面和{111}面的刻蚀程度和形貌均不同;当温度为750℃时,Pr_(6)O_(11)对金刚石单晶已有一定程度的刻蚀,随刻蚀温度的增加,刻蚀加剧,且金刚石{111}面的刻蚀程度比{100}面严重;{111}面刻蚀坑形貌从三角形变为层状结构三角形,{100}面由轻微的四边形变为类蜂窝状刻蚀坑;{111}面最大刻蚀深度从1.12μm增加到12.54μm,而{100}面只从0.30μm增加到2.11μm;金刚石单颗粒的抗压强度由未刻蚀金刚石的576.25 N降低到最小530.06 N,冲击韧性由92.94 J/cm^(2)减小到88.53 J/cm^(2);Pr_(6)O_(11)对金刚石单晶的刻蚀机理在885℃前为催化石墨化,885℃后为催化石墨化和氧化。  相似文献   

13.
The wear pattern on a single point diamond tool used for machining glass is studied. Possible wear mechanisms are proposed on the basis of additional sliding wear tests and observations by scanning electron and optical microscopy. The wear process is believed to take place in two stages, one involving a polishing mechanism and the other consisting of crack propagation which occurs after the accumulation of a certain amount of damage. The importance of the crystallographic orientation of the diamond single crystal, particularly for crack propagation along cleavage planes is pointed out. It is concluded that the likelihood of rapid deterioration of the diamond tool may be decreased by proper crystallographic orientation.  相似文献   

14.
通过对工业纯铁的球形单晶体试样化学染色,全方位地显示了各种位向表面的干涉色及各干涉色在球面上的对称分布特征,经X射线背射芳厄法位向分析标定出各干涉色与晶体位向的对应关系,绘制出相位化染图案的单位赤面投影三角形,结果表明,单晶体金属表面上的每一种干涉色对应于一定范围内的许多不同位向。球面化染图案具有与被染色金属晶体的结构桢的对称性,可用于晶体的定量测定。  相似文献   

15.
Metallic nanostructures with high aspect ratios are important for developing devices in photonics and integrated optics. However, fabricating well-aligned plasmonic arrays is challenging due to the difficulties of etching metals. In this work, we investigate the feasibility of constructing high aspect ratio nanorods with desired shapes and controllable geometric parameters using direct focused ion beam etching. The whole fabrication process only involves a metal-deposition step and a single milling of designed patterns. Detailed characterizations of the fabricated devices are also experimentally demonstrated.  相似文献   

16.
By using the bias-assisted reactive ion etching technique and the etching masks of Au nanodots, the high-density single crystalline diamond nanorods have been obtained from the polycrystalline diamond films with randomly-oriented grains grown on silicon substrates. The inhomogenous distribution of the nanorods mainly results from the existence of grain boundaries in the films, and can be effectively improved by adding the graphite sheet under the substrate. Furthermore, the fabrication mechanism of the nanorod array is carefully investigated in this paper. The morphological evolution is observed by using a scanning electron microscopy technique. Raman measurements are carried out to monitor the phase change during the etching process. It is found that the non-diamond phases are present during the experimental process, and then are completely removed away in the end.  相似文献   

17.
The solid-liquid(S/L) intedecial morphology of a single crystal superalloy DD8 has been in-vestigated. The evolutive behavior of cellular morphology with tilted preferred crystallographic orientation near cell-dendrite transition was dynamically observed, and the efFect of crystallo-graphic orientation on primary dendritic arm spacing has been examined. The experimental results show that for planar and cellular morphology no any S/L interfacial anisotropy exists,but near cell-dendrite transition, the S/L intedecial anisotropy appears and gives rise to the cellular crystal fingers tilted from thermal flow direction to preferred crystallographic orientation.The crystal fingers with their preferred orientation parallel to DS growth direction are more stable than that with tilted orientation. For the tilted fingers, the sudece on the side facing DS growth direction is less stable than that on the reverse side, the different stability on the two sides will lead to forming unsymmetrical dendritical microstructure. With the increase of tilted angle of preferred crystallographic orientation, the primary dendrite arm spacing decreases.  相似文献   

18.
Naureen S  Sanatinia R  Shahid N  Anand S 《Nano letters》2011,11(11):4805-4811
Dense and uniform arrays of InP-based nanopillars were fabricated by dry etching using self-assembly of colloidal silica particles for masking. The pillars, both single and arrays, fabricated from epitaxially grown InP and InP/GaInAsP/InP quantum well structures show excellent photoluminescence (PL) even at room temperature. The measured PL line widths are comparable to the as-grown wafer indicating high quality fabricated pillars. A stamping technique enables transfer with arbitrary densities of the nanopillars freed from the substrate by selectively etching a sacrificial InGaAs layer.  相似文献   

19.
The wet etching of GaN, AlN, and SiC is reviewed including conventional etching in aqueous solutions, electrochemical etching in electrolytes and defect-selective chemical etching in molten salts. The mechanism of each etching process is discussed. Etching parameters leading to highly anisotropic etching, dopant-type/bandgap selective etching, defect-selective etching, as well as isotropic etching are discussed. The etch pit shapes and their origins are discussed. The applications of wet etching techniques to characterize crystal polarity and defect density/distribution are reviewed. Additional applications of wet etching for device fabrication, such as producing crystallographic etch profiles, are also reviewed.  相似文献   

20.
The reactive ion etching (RIE) technique was used to etch polycrystalline diamond thin films. In this study we investigate the influence of process parameters (total pressure, rf power, gas composition) of standard capacitively coupled plasma RIE system on the etching rate of diamond films. The surface morphology of etched diamond films was characterized by Scanning Electron Microscopy and the chemical composition of the etched film part was investigated by Raman Spectroscopy.We found that the gas composition had a crucial effect on the diamond film morphology. The use of CF4 gas resulted in flatter surfaces and lateral-like etching, while the use of pure O2 gas resulted in needle-like structures. Addition of argon to the reactant precursors increased the ion bombardment, which in turn increased the formation of non-diamond phases. Next, increasing the rf power from 100 to 500 W increased the etching rate from 5.4 to 8.6 μm/h. In contrast to this observation, the rise of process pressure from 80 to 150 mTorr lowered the etching rate from 5.6 down to 3.6 μm/h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号