首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Architected materials with nano/microscale orders can provide superior mechanical properties; however, reproducing such levels of ordering in complex structures has remained challenging. Inspired by Bouligand structures in nature, here, 3D printing of complex geometries with guided long-order radially twisted chiral hierarchy, using cellulose nanocrystals (CNC)-based inks is presented. Detailed rheological measurements, in situ flow analysis, polarized optical microscopy (POM), and director field analysis are employed to evaluate the chiral assembly over the printing process. It is demonstrated that shear flow forces inside the 3D printer's nozzle orient individual CNC particles forming a pseudo-nematic phase that relaxes to uniformly aligned concentric chiral nematic structures after the flow cessation. Acrylamide, a photo-curable monomer, is incorporated to arrest the concentric chiral arrangements within the printed filaments. The time series POM snapshots show that adding the photo-curable monomer at the optimized concentrations does not interfere with chiral self-assemblies and instead increases the chiral relaxation rate. Due to the liquid-like nature of the as-printed inks, optimized Carbopol microgels are used to support printed filaments before photo-polymerization. By paving the path towards developing bio-inspired materials with nanoscale hierarchies in larger-scale printed constructs, this biomimetic approach expands 3D printing materials beyond what has been realized so far.  相似文献   

2.
Rigid biological systems are increasingly becoming a source of inspiration for the fabrication of next generation advanced functional materials due to their diverse hierarchical structures and remarkable engineering properties. Among these rigid biomaterials, nacre, as the main constituent of the armor system of seashells, exhibiting a well‐defined ‘brick‐and‐mortar’ architecture, excellent mechanical properties, and interesting iridescence, has become one of the most attractive models for novel artificial materials design. In this review, recent advances in nacre‐inspired artificial carbonate nanocrystals and layered structural nanocomposites are presented. To clearly illustrate the inspiration of nacre, the basic principles relating to plate‐like aragonite single‐crystal growth and the contribution of hierarchical structure to outstanding properties in nacre are discussed. The inspiration of nacre for the synthesis of carbonate nanocrystals and the fabrication of layered structural nanocomposites is also discussed. Furthermore, the broad applications of these nacre inspired materials are emphasized. Finally, a brief summary of present nacre‐inspired materials and challenges for the next generation of nacre‐inspired materials is given.  相似文献   

3.
Biological materials with hierarchical architectures (e.g., a macroscopic hollow structure and a microscopic cellular structure) offer unique inspiration for designing and manufacturing advanced biomimetic materials with outstanding mechanical performance and low density. Most conventional biomimetic materials only benefit from bioinspired architecture at a single length scale (e.g., microscopic material structure), which largely limits the mechanical performance of the resulting materials. There exists great potential to maxime the mechanical performance of biomimetic materials by leveraging a bioinspired hierarchical structure. An ink‐based three‐dimensional (3D) printing strategy to manufacture an ultralight biomimetic hierarchical graphene material (BHGMs) with exceptionally high stiffness and resilience is demonstrated. By simultaneously engineering 3D‐printed macroscopic hollow structures and constructing an ice‐crystal‐induced cellular microstructure, BHGMs can achieve ultrahigh elasticity and stability at compressive strains up to 95%. Multiscale finite element analyses indicate that the hierarchical structures of BHGMs effectively reduce the macroscopic strain and transform the microscopic compressive deformation into the rotation and bending of the interconnected graphene flakes. This 3D printing strategy demonstrates the great potential that exists for the assembly of other functional materials into hierarchical cellular structures for various applications where high stiffness and resilience at low density are simultaneously required.  相似文献   

4.
The integration of nanotechnology into three‐dimensional printing (3DP) offers huge potential and opportunities for the manufacturing of 3D engineered materials exhibiting optimized properties and multifunctionality. The literature relating to different 3DP techniques used to fabricate 3D structures at the macro‐ and microscale made of nanocomposite materials is reviewed here. The current state‐of‐the‐art fabrication methods, their main characteristics (e.g., resolutions, advantages, limitations), the process parameters, and materials requirements are discussed. A comprehensive review is carried out on the use of metal‐ and carbon‐based nanomaterials incorporated into polymers or hydrogels for the manufacturing of 3D structures, mostly at the microscale, using different 3D‐printing techniques. Several methods, including but not limited to micro‐stereolithography, extrusion‐based direct‐write technologies, inkjet‐printing techniques, and popular powder‐bed technology, are discussed. Various examples of 3D nanocomposite macro‐ and microstructures manufactured using different 3D‐printing technologies for a wide range of domains such as microelectromechanical systems (MEMS), lab‐on‐a‐chip, microfluidics, engineered materials and composites, microelectronics, tissue engineering, and biosystems are reviewed. Parallel advances on materials and techniques are still required in order to employ the full potential of 3D printing of multifunctional nanocomposites.  相似文献   

5.
In the past centuries, the scale of engineering optics has evolved toward two opposite directions: one is represented by giant telescopes with apertures larger than tens of meters and the other is the rapidly developing micro/nano‐optics and nanophotonics. At the nanoscale, subwavelength light–matter interaction is blended with classic and quantum effects in various functional materials such as noble metals, semiconductors, phase‐change materials, and 2D materials, which provides unprecedented opportunities to upgrade the performance of classic optical devices and overcome the fundamental and engineering difficulties faced by traditional optical engineers. Here, the research motivations and recent advances in subwavelength artificial structures are summarized, with a particular emphasis on their practical applications in super‐resolution and large‐aperture imaging systems, as well as highly efficient and spectrally selective absorbers and emitters. The role of dispersion engineering and near‐field coupling in the form of catenary optical fields is highlighted, which reveals a methodology to engineer the electromagnetic response of complex subwavelength structures. Challenges and tentative solutions are presented regarding multiscale design, optimization, fabrication, and system integration, with the hope of providing recipes to transform the theoretical and technological breakthroughs on subwavelength hierarchical structures to the next generation of engineering optics, namely Engineering Optics 2.0.  相似文献   

6.
Advanced functional materials with fascinating properties and extended structural design have greatly broadened their applications. Metamaterials, exhibiting unprecedented physical properties (mechanical, electromagnetic, acoustic, etc.), are considered frontiers of physics, material science, and engineering. With the emerging 3D printing technology, the manufacturing of metamaterials becomes much more convenient. Graphene, due to its superior properties such as large surface area, superior electrical/thermal conductivity, and outstanding mechanical properties, shows promising applications to add multi-functionality into existing metamaterials for various applications. In this review, the aim is to outline the latest developments and applications of 3D printed graphene-based metamaterials. The structure design of different types of metamaterials and the fabrication strategies for 3D printed graphene-based materials are first reviewed. Then the representative explorations of 3D printed graphene-based metamaterials and multi-functionality that can be introduced with such a combination are further discussed. Subsequently, challenges and opportunities are provided, seeking to point out future directions of 3D printed graphene-based metamaterials.  相似文献   

7.
总结了天然铠甲材料的三种共性组织结构特征及其内在强韧化机理,归纳出三种典型的生物力学效应,包括梯度结构取向效应、原位结构再取向效应和多级"缝合"界面效应,并提出了相应的仿生材料结构优化设计原则.生物力学理论的完善和多种仿生结构的综合应用,有利于使用新型仿生材料更好地解决实际工程问题.  相似文献   

8.
3D Printed Photoresponsive Devices Based on Shape Memory Composites   总被引:1,自引:0,他引:1       下载免费PDF全文
Compared with traditional stimuli‐responsive devices with simple planar or tubular geometries, 3D printed stimuli‐responsive devices not only intimately meet the requirement of complicated shapes at macrolevel but also satisfy various conformation changes triggered by external stimuli at the microscopic scale. However, their development is limited by the lack of 3D printing functional materials. This paper demonstrates the 3D printing of photoresponsive shape memory devices through combining fused deposition modeling printing technology and photoresponsive shape memory composites based on shape memory polymers and carbon black with high photothermal conversion efficiency. External illumination triggers the shape recovery of 3D printed devices from the temporary shape to the original shape. The effect of materials thickness and light density on the shape memory behavior of 3D printed devices is quantified and calculated. Remarkably, sunlight also triggers the shape memory behavior of these 3D printed devices. This facile printing strategy would provide tremendous opportunities for the design and fabrication of biomimetic smart devices and soft robotics.  相似文献   

9.
Recent advances in materials science and three‐dimensional (3D) printing hold great promises to conceive new classes of multifunctional materials and components for functional devices and products. Various functionalities (e.g., mechanical, electrical, and thermal properties, magnetism) can be offered by the nano‐ and micro‐reinforcements to the non‐functional pure printing materials for the realization of advanced materials and innovative systems. In addition, the ability to print 3D structures in a layer‐by‐layer manner enables manufacturing of highly‐customized complex features and allows an efficient control over the properties of fabricated structures. Here, the authors present a brief overview mainly over the latest progresses in 3D printing of multifunctional polymer nanocomposites and microfiber‐reinforced composites including the benefits, limitations, and potential applications. Only those 3D printing techniques that are compatible with polymer nanocomposites and composites, that is, materials that have already been used as printing materials, are introduced. The very hot topic of 3D printing of thermoplastic composites featuring continuous microfibers is also briefly introduced.  相似文献   

10.
Micro/nano-scaled mechanical metamaterials have attracted extensive attention in various fields attributed to their superior properties benefiting from their rationally designed micro/nano-structures. As one of the most advanced technologies in the 21st century, additive manufacturing (3D printing) opens an easier and faster path for fabricating micro/nano-scaled mechanical metamaterials with complex structures. Here, the size effect of metamaterials at micro/nano scales is introduced first. Then, the additive manufacturing technologies to fabricate mechanical metamaterials at micro/nano scales are introduced. The latest research progress on micro/nano-scaled mechanical metamaterials is also reviewed according to the type of materials. In addition, the structural and functional applications of micro/nano-scaled mechanical metamaterials are further summarized. Finally, the challenges, including advanced 3D printing technologies, novel material development, and innovative structural design, for micro/nano-scaled mechanical metamaterials are discussed, and future perspectives are provided. The review aims to provide insight into the research and development of 3D-printed micro/nano-scaled mechanical metamaterials.  相似文献   

11.
Bioinspired methods allowing artificial actuators to perform controllably are potentially important for various principles and may offer fundamental insight into chemistry and engineering. To date, the main challenges persist regarding the achievement of large deformation in fast response‐time and potential‐engineering applications in which electrode materials and structures limit ion diffusion and accumulation processes. Herein, a novel electrochemical actuator is developed that presents both higher electromechanical performances and biomimetic applications based on hierachically structured covalently bridged black phosphorous/carbon nanotubes. The new actuator demonstrates astonishing actuation properties, including low power consumption/strain (0.04 W cm?2 %?1), a large peak‐to‐peak strain (1.67%), a controlled frequency response (0.1–20 Hz), faster strain and stress rates (11.57% s?1; 28.48 MPa s?1), high power (29.11 kW m?3), and energy (8.48 kJ m?3) densities, and excellent cycling stability (500 000 cycles). More importantly, bioinspired applications such as artificial‐claw, wings‐vibrating, bionic‐flower, and hand actuators have been realized. The key to high performances stems from hierachically structured materials with an ordered lamellar structure, large redox activity, and electrochemical capacitance (321.4 F g?1) for ions with smooth diffusion and flooding accommodation, which will guide substantial progress of next‐generation electrochemical actuators.  相似文献   

12.
自然界中生物材料表现出的力学性能与其结构设计形式紧密相关。柔性生物材料多为多级结构设计,其独特的功能梯度特征使其具备优异的变形能力及良好的断裂韧性。本文借鉴工程结构设计基本单元的思想提出柔性结构仿生元素理念,根据几何形态将结构仿生元素分为:线元素、梁元素、柱元素、板壳元素、薄膜元素及组合元素。根据系统论的观点建立仿生柔性结构设计体系,归纳总结出柔性仿生结构的设计准则,并基于鱼鳞梯度结构设计新型仿生功能梯度板。通过有限元的方法对功能梯度板归一化自然频率进行分析。结果表明,类鱼鳞功能梯度板具有柔韧性及刚度软化特性。阐述了仿生柔性结构的设计方法,包括模仿设计、组合设计及选择匹配设计。  相似文献   

13.
The increasing demand for constructing ecological civilization and promoting socially sustainable development has encouraged scientists to develop bioinspired materials with required properties and functions. By bringing science and nature together, plenty of novel materials with extraordinary properties can be created by learning the best from natural species. In combination with the exceptional features of 2D nanomaterials, bioinspired 2D nanomaterials and technologies have delivered significant achievements. Here, the progress over the past decade in bioinspired 2D photonic structures, energy nanomaterials, and superwetting materials, is summarized, together with the challenges and opportunities in developing bioinspired materials for sustainable energy and environmental technologies.  相似文献   

14.
Most natural materials expand uniformly in all directions upon heating. Artificial, engineered systems offer opportunities to tune thermal expansion properties in interesting ways. Previous reports exploit diverse design principles and fabrication techniques to achieve a negative or ultralow coefficient of thermal expansion, but very few demonstrate tunability over different behaviors. This work presents a collection of 2D material structures that exploit bimaterial serpentine lattices with micrometer feature sizes as the basis of a mechanical metamaterials system capable of supporting positive/negative, isotropic/anisotropic, and homogeneous/heterogeneous thermal expansion properties, with additional features in unusual shearing, bending, and gradient modes of thermal expansion. Control over the thermal expansion tensor achieved in this way provides a continuum‐mechanics platform for advanced strain‐field engineering, including examples of 2D metamaterials that transform into 3D surfaces upon heating. Integrated electrical and optical sources of thermal actuation provide capabilities for reversible shape reconfiguration with response times of less than 1 s, as the basis of dynamically responsive metamaterials.  相似文献   

15.
冯东  王博  刘琦  陈朔  陈刚  胡天丁 《复合材料学报》2021,38(5):1371-1386
3D打印又称增材制造技术,是基于材料、机械控制、计算机软件等多学科交叉的先进制造技术,可得到传统加工不能制备的形状复杂制件.熔融沉积成型(FDM)是目前最通用的3D打印技术之一,具有设备简单、成本低、操作便捷等特点,广泛应用于航空航天、医疗、汽车工业等领域.本文介绍了国内外3D打印技术的整体布局、发展和规划,总结了常见...  相似文献   

16.
The architecture of the colloidal photonic crystals (CPCs) is of paramount importance to their functionality and applications. Nevertheless, the realization of CPCs with arbitrarily designed, volumetrically sophisticated structures at the macroscale remains challenging. In this work, a printable CPC ink was developed. By combining this ink with a digital light processing (DLP)-based three-dimensional (3D) printing system, we were able to fabricate the CPC superstructures featuring both digitally defined macroscale geometries and structural colors originating from the ordered structures at the sub-micron scale. Moreover, besides the arbitrarily adjustable and precisely designable architectures, the optical properties, mechanical performances, and stimuli-responsiveness of the printed objects could also be facilely tuned by the composition of the ink or the printing parameters of the DLP system. This technology endows us the ability to fabricate CPCs with a multitude of desirable functions as well as mimic the hierarchical structures and color-manipulation strategies of some creatures in nature, which paves the way for potentially broad applications in intelligent color displays, 3D integrated sensors, biomimetic color-morphing soft robots, and smart anti-counterfeiting labels, among others.  相似文献   

17.
Synthetic mimics of natural high‐performance structural materials have shown great and partly unforeseen opportunities for the design of multifunctional materials. For nacre‐mimetic nanocomposites, it has remained extraordinarily challenging to make ductile materials with high stretchability at high fractions of reinforcements, which is however of crucial importance for flexible barrier materials. Here, highly ductile and tough nacre‐mimetic nanocomposites are presented, by implementing weak, but many hydrogen bonds in a ternary nacre‐mimetic system consisting of two polymers (poly(vinyl amine) and poly(vinyl alcohol)) and natural nanoclay (montmorillonite) to provide efficient energy dissipation and slippage at high nanoclay content (50 wt%). Tailored interactions enable exceptional combinations of ductility (close to 50% strain) and toughness (up to 27.5 MJ m?3). Extensive stress whitening, a clear sign of high internal dynamics at high internal cohesion, can be observed during mechanical deformation, and the materials can be folded like paper into origami planes without fracture. Overall, the new levels of ductility and toughness are unprecedented in highly reinforced bioinspired nanocomposites and are of critical importance to future applications, e.g., as barrier materials needed for encapsulation and as a printing substrate for flexible organic electronics.  相似文献   

18.
Microcapsules are often used as individually dispersed carriers of active ingredients to prolong their shelf life or to protect premature reactions with substances contained in the surrounding. This study goes beyond this application and employs microcapsules as principal building blocks of macroscopic 3D materials with well‐defined granular structures. To achieve this goal and inspired by nature, capsules are fabricated from block‐copolymer surfactants that are functionalized with catechols, a metal‐coordinating motive. These surfactants self‐assemble at the surface of emulsion drops where they are ionically cross‐linked to form viscoelastic capsules that display a low permeability even toward small encapsulants. It is demonstrated that the combination of the mechanical strength, flexibility, and stickiness of the capsules enables their additive manufacturing into macroscopic granular structures. Thereby, they open up new opportunities for 3D printing of soft, self‐healing materials composed of individual compartments that can be functionalized with different types of spatially separated reagents.  相似文献   

19.
3D structures that incorporate high‐performance electronic materials and allow for remote, on‐demand 3D shape reconfiguration are of interest for applications that range from ingestible medical devices and microrobotics to tunable optoelectronics. Here, materials and design approaches are introduced for assembly of such systems via controlled mechanical buckling of 2D precursors built on shape‐memory polymer (SMP) substrates. The temporary shape fixing and recovery of SMPs, governed by thermomechanical loading, provide deterministic control over the assembly and reconfiguration processes, including a range of mechanical manipulations facilitated by the elastic and highly stretchable properties of the materials. Experimental demonstrations include 3D mesostructures of various geometries and length scales, as well as 3D aquatic platforms that can change trajectories and release small objects on demand. The results create many opportunities for advanced, programmable 3D microsystem technologies.  相似文献   

20.
The synergistic integration of nanomaterials with 3D printing technologies can enable the creation of architecture and devices with an unprecedented level of functional integration. In particular, a multiscale 3D printing approach can seamlessly interweave nanomaterials with diverse classes of materials to impart, program, or modulate a wide range of functional properties in an otherwise passive 3D printed object. However, achieving such multiscale integration is challenging as it requires the ability to pattern, organize, or assemble nanomaterials in a 3D printing process. This review highlights the latest advances in the integration of nanomaterials with 3D printing, achieved by leveraging mechanical, electrical, magnetic, optical, or thermal phenomena. Ultimately, it is envisioned that such approaches can enable the creation of multifunctional constructs and devices that cannot be fabricated with conventional manufacturing approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号