首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies indicate that carbon dots (CDs) can efficiently generate singlet oxygen (1O2) for photodynamic therapy (PDT) of cancer. However, the hypoxic tumor microenvironment and rapid consumption of oxygen in the PDT process will severely limit therapeutic effects of CDs due to the oxygen‐dependent PDT. Thus, it is becoming particularly important to develop a novel CD as an in situ tumor oxygenerator for overcoming hypoxia and substantially enhancing the PDT efficacy. Herein, for the first time, magnetofluorescent Mn‐CDs are successfully prepared using manganese(II) phthalocyanine as a precursor. After cooperative self‐assembly with DSPE‐PEG, the obtained Mn‐CD assembly can be applied as a smart contrast agent for both near‐infrared fluorescence (FL) (maximum peak at 745 nm) and T1‐weighted magnetic resonance (MR) (relaxivity value of 6.97 mM?1 s?1) imaging. More interestingly, the Mn‐CD assembly can not only effectively produce 1O2 (quantum yield of 0.40) but also highly catalyze H2O2 to generate oxygen. These collective properties of the Mn‐CD assembly enable it to be utilized as an acidic H2O2‐driven oxygenerator to increase the oxygen concentration in hypoxic solid tumors for simultaneous bimodal FL/MR imaging and enhanced PDT. This work explores a new biomedical use of CDs and provides a versatile carbon nanomaterial candidate for multifunctional nanotheranostic applications.  相似文献   

2.
Photodynamic therapy (PDT) typically involves oxygen (O2) consumption and therefore suffers from greatly limited anticancer therapeutic efficacy in tumor hypoxia. Here, it is reported for the first time that amine‐terminated, PAMAM dendrimer‐encapsulated gold nanoclusters (AuNCs‐NH2) can produce O2 for PDT via their intrinsic catalase‐like activity. The AuNCs‐NH2 not only show optimum H2O2 consumption via the catalase‐like activity over the physiological pH range (i.e., pH 4.8–7.4), but also extend such activity to acidic conditions. The possible mechanism is deduced from that the enriched tertiary amines of dendrimers are easily protonated in acidic solutions to facilitate the preadsorption of OH on the metal surface, thereby favorably triggering the catalase‐like reaction. By taking advantage of the exciting feature on AuNCs‐NH2, the possibility to supply O2 via the catalase‐like activity of AuNCs‐NH2 for PDT against hypoxia of cancer cells was further studied. This proof‐of‐concept study provides a simple way to combine current O2‐dependent cancer therapy of PDT to overcome cancer cell hypoxia, thus achieving more effective anticancer treatments.  相似文献   

3.
Local hypoxia in tumors, as well as the short lifetime and limited action region of 1O2, are undesirable impediments for photodynamic therapy (PDT), leading to a greatly reduced effectiveness. To overcome these adversities, a mitochondria‐targeting, H2O2‐activatable, and O2‐evolving PDT nanoplatform is developed based on FeIII‐doped two‐dimensional C3N4 nanofusiform for highly selective and efficient cancer treatment. The ultrahigh surface area of 2D nanosheets enhances the photosensitizer (PS) loading capacity and the doping of FeIII leads to peroxidase mimetics with excellent catalytic performance towards H2O2 in cancer cells to generate O2. As such tumor hypoxia can be overcome and the PDT efficacy is improved, whilst at the same time endowing the PDT theranostic agent with an effective T 1‐weighted in vivo magnetic resonance imaging (MRI) ability. Conjugation with a mitochondria‐targeting agent could further increase the sensitivity of cancer cells to 1O2 by enhanced mitochondria dysfunction. In vitro and in vivo anticancer studies demonstrate an outstanding therapeutic effectiveness of the developed PDT agent, leading to almost complete destruction of mouse cervical tumor. This development offers an attractive theranostic agent for in vivo MRI and synergistic photodynamic therapy toward clinical applications.  相似文献   

4.
Tumor hypoxia severely limits the efficacy of traditional photodynamic therapy (PDT). Here, a liposome‐based nanoparticle (designated as LipoMB/CaO2) with O2 self‐sufficient property for dual‐stage light‐driven PDT is demonstrated to address this problem. Through a short time irradiation, 1O2 activated by the photosensitizer methylene blue (MB) can induce lipid peroxidation to break the liposome, and enlarge the contact area of CaO2 with H2O, resulting in accelerated O2 production. Accelerated O2 level further regulates hypoxic tumor microenvironment and in turn improves 1O2 generation by MB under another long time irradiation. In vitro and in vivo experiments also demonstrate the superior competence of LipoMB/CaO2 to alleviate tumor hypoxia, suppress tumor growth and antitumor metastasis with low side‐effect. The O2 self‐sufficient LipoMB/CaO2 nanoplatform with dual‐stage light manipulation is a successful attempt for PDT against hypoxic tumor.  相似文献   

5.
Photodynamic therapy (PDT) agent, which generates singlet oxygen (1O2) under light, has attracted significant attention for its broad biological and medical applications. Here, DNA‐driven shell–satellite (SS) gold assemblies as chiral photosensitizers are first fabricated. The chiral plasmonic nanostructure, coupling with cysteine enantiomers on its surface, exhibits intense chiroplasmonic activities (?40.2 ± 2.6 mdeg) in the visible region. These chiral SS nanoassemblies have high reactive oxygen species generating efficiency under circular polarized light illumination, resulting in a 1O2 quantum yield of 1.09. Meanwhile, it is found that SS could be utilized as PDT agent with remarkable efficiency under right circular polarized light irradiation in vitro and in vivo, allowing X‐ray computed tomography (CT) and photoacoustics (PA) imaging for tumors simultaneously. The achievements reveal that the enantiomer‐dependent and structure‐induced nanoassemblies play an important role in PDT effects. The present researches open up a new avenue for cancer diagnose and therapy using chiral nanostructures as multifunctional platform.  相似文献   

6.
During photodynamic therapy (PDT), severe hypoxia often occurs as an undesirable limitation of PDT owing to the O2‐consuming photodynamic process, compromising the effectiveness of PDT. To overcome this problem, several strategies aiming to improve tumor oxygenation are developed. Unlike these traditional approaches, an opposite method combining hypoxia‐activated prodrug and PDT may provide a promising strategy for cancer synergistic therapy. In light of this, azido‐/photosensitizer‐terminated UiO‐66 nanoscale metal–organic frameworks (UiO‐66‐H/N3 NMOFs) which serve as nanocarriers for the bioreductive prodrug banoxantrone (AQ4N) are engineered. Owing to the effective shielding of the nanoparticles, the stability of AQ4N is well preserved, highlighting the vital function of the nanocarriers. By virtue of strain‐promoted azide–alkyne cycloaddition, the nanocarriers are further decorated with a dense PEG layer to enhance their dispersion in the physiological environment and improve their therapeutic performance. Both in vitro and in vivo studies reveal that the O2‐depleting PDT process indeed aggravates intracellular/tumor hypoxia that activates the cytotoxicity of AQ4N through a cascade process, consequently achieving PDT‐induced and hypoxia‐activated synergistic therapy. Benefiting from the localized therapeutic effect of PDT and hypoxia‐activated cytotoxicity of AQ4N, this hybrid nanomedicine exhibits enhanced therapeutic efficacy with negligible systemic toxicity, making it a promising candidate for cancer therapy.  相似文献   

7.
Here a multifunctional nanoplatform (upconversion nanoparticles (UCNPs)‐platinum(IV) (Pt(IV))?ZnFe2O4, denoted as UCPZ) is designed for collaborative cancer treatment, including photodynamic therapy (PDT), chemotherapy, and Fenton reaction. In the system, the UCNPs triggered by near‐infrared light can convert low energy photons to high energy ones, which act as the UV–vis source to simultaneously mediate the PDT effect and Fenton's reaction of ZnFe2O4 nanoparticles. Meanwhile, the Pt(IV) prodrugs can be reduced to high virulent Pt(II) by glutathione in the cancer cells, which can bond to DNA and inhibit the copy of DNA. The synergistic therapeutic effect is verified in vitro and in vivo results. The cleavage of Pt(IV) from UCNPs during the reduction process can shift the larger UCPZ nanoparticles (NPs) to the smaller ones, which promotes the enhanced permeability and retention (EPR) and deep tumor penetration. In addition, due to the inherent upconversion luminescence (UCL) and the doped Yb3+ and Fe3+ in UCPZ, this system can serve as a multimodality bioimaging contrast agent, covering UCL, X‐ray computed tomography, magnetic resonance imaging, and photoacoustic. A smart all‐in‐one imaging‐guided diagnosis and treatment system is realized, which should have a potential value in the treatment of tumor.  相似文献   

8.
Fenton reaction‐mediated chemodynamic therapy (CDT) can kill cancer cells via the conversion of H2O2 to highly toxic HO?. However, problems such as insufficient H2O2 levels in the tumor tissue and low Fenton reaction efficiency severely limit the performance of CDT. Here, the prodrug tirapazamine (TPZ)‐loaded human serum albumin (HSA)–glucose oxidase (GOx) mixture is prepared and modified with a metal–polyphenol network composed of ferric ions (Fe3+) and tannic acid (TA), to obtain a self‐amplified nanoreactor termed HSA–GOx–TPZ–Fe3+–TA (HGTFT) for sustainable and cascade cancer therapy with exogenous H2O2 production and TA‐accelerated Fe3+/Fe2+ conversion. The HGTFT nanoreactor can efficiently convert oxygen into HO? for CDT, consume glucose for starvation therapy, and provide a hypoxic environment for TPZ radical‐mediated chemotherapy. Besides, it is revealed that the nanoreactor can significantly elevate the intracellular reactive oxygen species content and hypoxia level, decrease the intracellular glutathione content, and release metal ions in the tumors for metal ion interference therapy (also termed “ion‐interference therapy” or “metal ion therapy”). Further, the nanoreactor can also increase the tumor’s hypoxia level and efficiently inhibit tumor growth. It is believed that this tumor microenvironment‐regulable nanoreactor with sustainable and cascade anticancer performance and excellent biosafety represents an advance in nanomedicine.  相似文献   

9.
Tumor hypoxia significantly diminishes the efficacy of reactive oxygen species (ROS)‐based therapy, mainly because the generation of ROS is highly oxygen dependent. Recently reported hypoxia‐irrelevant radical initiators (AIBIs) exhibit promising potential for cancer therapy under different oxygen tensions. However, overexpressed glutathione (GSH) in cancer cells would potently scavenge the free radicals produced from AIBI before their arrival to the specific site and dramatically limit the therapeutic efficacy. A synergistic antitumor platform (MoS2@AIBI‐PCM nanoflowers) is constructed by incorporating polyethylene‐glycol‐functionalized molybdenum disulfide (PEG‐MoS2) nanoflowers with azo initiator and phase‐change material (PCM). Under near‐infrared laser (NIR) irradiation, the photothermal feature of PEG‐MoS2 induces the decomposition of AIBI to produce free radicals. Furthermore, PEG‐MoS2 can facilitate GSH oxidation without releasing toxic metal ions, greatly promoting tumor apoptosis and avoiding the introduction of toxic metal ions. This is the first example of the use of intelligent MoS2‐based nanoflowers as a benign GSH scavenger for enhanced cancer treatment.  相似文献   

10.
Previously, a large volume of papers reports that gold nanorods (Au NRs) are able to effectively kill cancer cells upon high laser doses (usually 808 nm, 1–48 W/cm2) irradiation, leading to hyperthermia‐induced destruction of cancer cells, i.e, photothermal therapy (PTT) effects. Combination of Au NRs‐mediated PTT and organic photosensitizers‐mediated photodynamic therapy (PDT) were also reported to achieve synergistic PTT and PDT effects on killing cancer cells. Herein, we demonstrate for the first time that Au NRs alone can sensitize formation of singlet oxygen (1O2) and exert dramatic PDT effects on complete destrcution of tumors in mice under very low LED/laser doses of single photon NIR (915 nm, <130 mW/cm2) light excitation. By changing the NIR light excitation wavelengths, Au NRs‐mediated phototherapeutic effects can be switched from PDT to PTT or combination of both. Both PDT and PTT effects were confirmed by measurements of reactive oxygen species (ROS) and heat shock protein (HSP 70), singlet oxygen sensor green (SOSG) sensing, and sodium azide quenching in cellular experiments. In vivo mice experiments further show that the PDT effect via irradiation of Au NRs by 915 nm can destruct the B16F0 melanoma tumor in mice far more effectively than doxorubicin (a clinically used anti‐cancer drug) as well as the PTT effect (via irradiation of Au NRs by 780 nm light). In addition, we show that Au NRs can emit single photon‐induced fluorescence to illustrate their in vivo locations/distribution.  相似文献   

11.
Hypoxia severely impedes photodynamic therapy (PDT) efficiency. Worse still, considerable tumor metastasis will occur after PDT. Herein, an organic superoxide radical (O2??) nano‐photogenerator as a highly effcient type I photosensitizer with robust vascular‐disrupting efficiency to combat these thorny issues is designed. Boron difluoride dipyrromethene (BODIPY)‐vadimezan conjugate (BDPVDA) is synthesized and enwrapped in electron‐rich polymer‐brushes methoxy‐poly(ethylene glycol)‐b‐poly(2‐(diisopropylamino) ethyl methacrylate) (mPEG‐ PPDA) to afford nanosized hydrophilic type I photosensitizer (PBV NPs). Owing to outstanding core–shell intermolecular electron transfer between BDPVDA and mPEG‐PPDA, remarkable O2?? can be produced by PBV NPs under near‐infrared irradiation even in severe hypoxic environment (2% O2), thus to accomplish effective hypoxic‐tumor elimination. Simultaneously, the efficient ester‐bond hydrolysis of BDPVDA in the acidic tumor microenvironment allows vadimezan release from PBV NPs to disrupt vasculature, facilitating the shut‐down of metastatic pathways. As a result, PBV NPs will not only be powerful in resolving the paradox between traditional type II PDT and hypoxia, but also successfully prevent tumor metastasis after type I PDT treatment (no secondary‐tumors found in 70 days and 100% survival rate), enabling enhancement of existing hypoxic‐and‐metastatic tumor treatment.  相似文献   

12.
Drug‐eluting stents (DESs) are promising candidates for treating human oesophageal cancer. However, the use of DESs to assist photodynamic therapy (PDT) of orthotopic oesophageal tumors is not yet demonstrated to the best of current knowledge. Herein, through an electrospinning technology it is shown that oxygen‐producing manganese dioxide nanoparticles are embedded into elelctrospun fibers, which are subsequently covered onto stents. Upon implantation, the nanoparticles are gradually released from the fibers and then diffuse into the nearby tumor tissue. Then, the hypoxic microenvironment can be effectively alleviated by reaction of MnO2 with the endogenous H2O2 within the tumor. After demonstrating the excellent PDT efficacy of the stents in a conventional subcutaneous mouse tumor model, such stents are further used for PDT treatment in a rabbit orthotopic oesophageal cancer model by inserting an optical fiber into the tumor site. Greatly prolonged survival of rabbits is observed after such intraluminal PDT treatment. Taken together, this work shows that the fiber‐covered stent as a nanoparticle delivery platform can enable effective PDT as a noninvasive treatment method for patients with advanced‐stage oesophageal cancer.  相似文献   

13.
Tumor hypoxia compromises the therapeutic efficiency of photodynamic therapy (PDT) as the local oxygen concentration plays an important role in the generation of cytotoxic singlet oxygen (1O2). Herein, a versatile mesoporous nanoenzyme (NE) derived from metal–organic frameworks (MOFs) is presented for in situ generation of endogenous O2 to enhance the PDT efficacy under bioimaging guidance. The mesoporous NE is constructed by first coating a manganese‐based MOFs with mesoporous silica, followed by a facile annealing process under the ambient atmosphere. After removing the mesoporous silica shell and post‐modifying with polydopamine and poly(ethylene glycol) for improving the biocompatibility, the obtained mesoporous NE is loaded with chlorin e6 (Ce6), a commonly used photosensitizer in PDT, with a high loading capacity. Upon the O2 generation through the catalytic reaction between the catalytic amount NE and the endogenous H2O2, the hypoxic tumor microenvironment is relieved. Thus, Ce6‐loaded NE serves as a H2O2‐activated oxygen supplier to increase the local O2 concentration for significantly enhanced antitumor PDT efficacy in vitro and in vivo. In addition, the NE also shows T2‐weighted magnetic resonance imaging ability for its in vivo tracking. This work presents an interesting biomedical use of MOF‐derived mesoporous NE as a multifunctional theranostic agent in cancer therapy.  相似文献   

14.
Photodynamic therapy (PDT) is a promising technique for cancer therapy, providing good therapeutic efficacy with minimized side effect. However, the lack of oxygen supply in the hypoxic tumor site obviously restricts the generation of singlet oxygen (1O2), thus limiting the efficacy of PDT. So far, the strategies to improve PDT efficacy usually rely on complicated nanosystems, which require sophisticated design or complex synthetic procedure. Herein, iodine‐rich semiconducting polymer nanoparticles (SPN‐I) for enhanced PDT, using iodine‐induced intermolecular heavy‐atom effect to elevate the 1O2 generation, are designed and prepared. The nanoparticles are composed of a near‐infrared (NIR) absorbing semiconducting polymer (PCPDTBT) serving as the photosensitizer and source of fluorescence signal, and an iodine‐grafted amphiphilic diblock copolymer (PEG‐PHEMA‐I) serving as the 1O2 generation enhancer and nanocarrier. Compared with SPN composed of PEG‐b‐PPG‐b‐PEG and PCPDTBT (SPN‐P), SPN‐I can enhance the 1O2 generation by 1.5‐fold. In addition, SPN‐I have high X‐ray attenuation coefficient because of the high density of iodine in PEG‐PHEMA‐I, providing SPN‐I the ability of use with computed tomography (CT) and fluorescence dual‐modal imaging. The study thus provides a simple nanotheranostic platform composed of two components for efficient CT/fluorescence dual‐modal imaging‐guided enhanced PDT.  相似文献   

15.
Osteocytes are bone cells encapsulated in a mineralized matrix. Since they are connected to nutrient blood vessels via narrow canaliculii which provide narrow, tortuous and often long diffusion pathways, the question arises as to how osteocytes are sufficiently supplied with O2 and metabolites. Furthermore, different oxygen partial pressures (PO2) ‐ resulting from O2 supply and local oxygen consumption ‐ may influence cellular proliferation and differentiation. In this context, O2 consumption rates of bone cells were measured and results were related to published blood flow values. This should allow to estimate mean venous PO2 and PO2 distribution in bone. O2 consumption of bone cells inside spongious calvarial fragments of neonatal rats and adult guinea pigs were measured polarographically in a thermostabilized recording chamber containing Hepes‐buffered saline. PO2 declined linearly as long as the PO2 ranged above 20 mmHg. At 27°C and 37°C, the O2 consumption rate of calvarial fragments from adult animals amounted to 0.06 and 0.1 ml/100 g?min, respectively. Calvaria from newborn rats showed 5‐fold higher values. At 45 °C, oxygen consumption was irreversibly abolished. The blood flow to bones amounts to 5–6 ml/100 g?min being equivalent to an oxygen delivery of about 1 ml/100 g?min. Based on the hemoglobin‐oxygen binding curve and on an O2 consumption of 0.1 ml/100 g ? min, venous PO2 calculates to ca. 60 mmHg. This appears to be a luxurious oxygen supply in bone. With respect to the long diffusion pathways, however, high PO2 values appear necessary to ensure sufficiently steep PO2 gradients for the the supply of cells remote from nutrient vessels. The resulting local oxygen gradients may orchestrate proliferation and differentiation of bone cells via oxygen‐dependent gene expression. Based on these considerations a model is proposed which comprises known factors influencing blood flow and oxygen tension in bone.  相似文献   

16.
Phototherapy is a promising treatment method for cancer therapy. However, the various factors have greatly restricted phototherapy development, including the poor accumulation of photosensitizer in tumor, hypoxia in solid tumor tissue and systemic phototoxicity. Herein, a mitochondrial‐targeted multifunctional dye‐anchored manganese oxide nanoparticle (IR808@MnO NP) is developed for enhancing phototherapy of cancer. In this nanoplatform, IR808 as a small molecule dye acts as a tumor targeting ligand to make IR808@MnO NPs with capacity to actively target tumor cells and relocate finally in the mitochondria. Meanwhile, continuous production of oxygen (O2) and regulation of pH induced by the high reactivity and specificity of MnO NPs toward mitochondrial endogenous hydrogen peroxide (H2O2) could effectively modulate tumor hypoxia and lessen the tumor subacid environment. Large amounts of reactive oxide species (ROS) are generated during the reaction process between H2O2 and MnO NPs. Furthermore, under laser irradiation, IR808 in IR808@MnO NPs turns O2 into a highly toxic singlet oxygen (1O2) and generates hyperthermia. The results indicate that IR808@MnO NPs have the high efficiency of specific targeting of tumors, relieving tumor subacid environment, improving the tumor hypoxia environment, and generating large amounts of ROS to kill tumor cells. It is expected to have a wide application in treating cancer.  相似文献   

17.
Recently, the development of multifunctional theranostic nanoplatforms to realize tumor‐specific imaging and enhanced cancer therapy via responding or modulating the tumor microenvironment (TME) has attracted tremendous interests in the field of nanomedicine. Herein, tungsten disulfide (WS2) nanoflakes with their surface adsorbed with iron oxide nanoparticles (IONPs) via self‐assembly are coated with silica and then subsequently with manganese dioxide (MnO2), on to which polyethylene glycol (PEG) is attached. The obtained WS2‐IO/S@MO‐PEG appears to be highly sensitive to pH, enabling tumor pH‐responsive magnetic resonance imaging with IONPs as the pH‐inert T2 contrast probe and MnO2 as the pH‐sensitive T1 contrast probe. Meanwhile, synergistic combination tumor therapy is realized with such WS2‐IO/S@MO‐PEG, by utilizing the strong near‐infrared light and X‐ray absorbance of WS2 for photothermal therapy (PTT) and enhanced cancer radiotherapy (RT), respectively, as well as the ability of MnO2 to decompose tumor endogenous H2O2 and relieve tumor hypoxia to further overcome hypoxia‐associated radiotherapy resistance. The combination of PTT and RT with WS2‐IO/S@MO‐PEG results in a remarkable synergistic effect to destruct tumors. This work highlights the promise of developing multifunction nanocomposites for TME‐specific imaging and TME modulation, aiming at precision cancer synergistic treatment.  相似文献   

18.
Photoimmunotherapy can not only effectively ablate the primary tumor but also trigger strong antitumor immune responses against metastatic tumors by inducing immunogenic cell death. Herein, Cu2MoS4 (CMS)/Au heterostructures are constructed by depositing plasmonic Au nanoparticles onto CMS nanosheets, which exhibit enhanced absorption in near‐infrared (NIR) region due to the newly formed mid‐gap state across the Fermi level based on the hybridization between Au 5d orbitals and S 3p orbitals, thus resulting in more excellent photothermal therapy and photodynamic therapy (PDT) effect than single CMS upon NIR laser irradiation. The CMS and CMS/Au can also serve as catalase to effectively relieve tumor hypoxia, which can enhance the therapeutic effect of O2‐dependent PDT. Notably, the NIR laser‐irradiated CMS/Au can elicit strong immune responses via promoting dendritic cells maturation, cytokine secretion, and activating antitumor effector T‐cell responses for both primary and metastatic tumors eradication. Moreover, CMS/Au exhibits outstanding photoacoustic and computed tomography imaging performance owing to its excellent photothermal conversion and X‐ray attenuation ability. Overall, the work provides an imaging‐guided and phototherapy‐induced immunotherapy based on constructing CMS/Au heterostructures for effectively tumor ablation and cancer metastasis inhibition.  相似文献   

19.
Photodynamic therapy (PDT), which relies on photosensitizers (PS) and light to generate reactive oxygen species to kill cancer cells or bacteria, has attracted much attention in recent years. PSs with both bright emission and efficient singlet oxygen generation have also been used for image‐guided PDT. However, simultaneously achieving effective 1O2 generation, long wavelength absorption, and stable near‐infrared (NIR) emission with low dark toxicity in a single PS remains challenging. In addition, it is well known that when traditional PSs are made into nanoparticles, they encounter quenched fluorescence and reduced 1O2 production. In this contribution, these challenging issues have been successfully addressed through designing the first photostable photosensitizer with aggregation‐induced NIR emission and very effective 1O2 generation in aggregate state. The yielded nanoparticles show very effective 1O2 generation, bright NIR fluorescence centered at 820 nm, excellent photostability, good biocompatibility, and negligible dark in vivo toxicity. Both in vitro and in vivo experiments prove that the nanoparticles are excellent candidates for image‐guided photodynamic anticancer therapy.  相似文献   

20.
It is hard for current radionuclide therapy to render solid tumors desirable therapeutic efficacy owing to insufficient tumor‐targeted delivery of radionuclides and severe tumor hypoxia. In this study, a biocompatible hybrid protein nanoreactor composed of human serum albumin (HSA) and catalase (CAT) molecules is constructed via glutaraldehyde‐mediated crosslinking. The obtained HSA‐CAT nanoreactors (NRs) show retained and well‐protected enzyme stability in catalyzing the decomposition of H2O2 and enable efficient labeling of therapeutic radionuclide iodine‐131 (131I). Then, it is uncovered that such HSA‐CAT NRs after being intravenously injected into tumor‐bearing mice exhibit efficient passive tumor accumulation as vividly visualized under the fluorescence imaging system and gamma camera. As the result, such HSA‐CAT NRs upon tumor accumulation would significantly attenuate tumor hypoxia by decomposing endogenous H2O2 produced by cancer cells to molecular oxygen, and thereby remarkably improve the therapeutic efficacy of radionuclide 131I. This study highlights the concise preparation of biocompatible protein nanoreactors with efficient tumor homing and hypoxia attenuation capacities, thus enabling greatly improved tumor radionuclide therapy with promising potential for future clinical translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号