首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Self‐powered photodetectors are highly desired to meet the great demand in applications of sensing, communication, and imaging. Manipulating the carrier separation and recombination is critical to achieve high performance. In this paper, a self‐powered photodetector based on the integrated gradient O‐doped CdS nanorod array and perovskite is presented. Through optimizing the degree of continuous built‐in band bending in the gradient‐O CdS, the photodetector demonstrates a remarkable detectivity of 2.1 × 1013 Jones. Under the self‐powered voltage mode, the responsivity can be as high as 0.48 A W?1, and the rise and decay time are 0.54/2.21 ms. The comprehensive performance is comparable and even better than reported perovskite and other types of self‐powered photodetectors. The improved mechanism reveals that the gradient band bending promotes the photogenerated carrier transfer and hinders the recombination at the interface.  相似文献   

2.
The quest for novel deformable image sensors with outstanding optoelectronic properties and large‐scale integration becomes a great impetus to exploit more advanced flexible photodetector (PD) arrays. Here, 10 × 10 flexible PD arrays with a resolution of 63.5 dpi are demonstrated based on as‐prepared perovskite arrays for photosensing and imaging. Large‐scale growth controllable CH3NH3PbI3?xClx arrays are synthesized on a poly(ethylene terephthalate) substrate by using a two‐step sequential deposition method with the developed Al2O3‐assisted hydrophilic–hydrophobic surface treatment process. The flexible PD arrays with high detectivity (9.4 × 1011 Jones), large on/off current ratio (up to 1.2 × 103), and broad spectral response exhibit excellent electrical stability under large bending angle (θ = 150°) and superior folding endurance after hundreds of bending cycles. In addition, the device can execute the functions of capturing a real‐time light trajectory and detecting a multipoint light distribution, indicating that it has widespread potential in photosensing and imaging for optical communication, digital display, and artificial electronic skin applications.  相似文献   

3.
Inorganic perovskites with special semiconducting properties and structures have attracted great attention and are regarded as next generation candidates for optoelectronic devices. Herein, using a physical vapor deposition process with a controlled excess of PbBr2, dual‐phase all‐inorganic perovskite composite CsPbBr3–CsPb2Br5 thin films are prepared as light‐harvesting layers and incorporated in a photodetector (PD). The PD has a high responsivity and detectivity of 0.375 A W?1 and 1011 Jones, respectively, and a fast response time (from 10% to 90% of the maximum photocurrent) of ≈280 µs/640 µs. The device also shows an excellent stability in air for more than 65 d without encapsulation. Tetragonal CsPb2Br5 provides satisfactory passivation to reduce the recombination of the charge carriers, and with its lower free energy, it enhances the stability of the inorganic perovskite devices. Remarkably, the same inorganic perovskite photodetector is also highly flexible and exhibits an exceptional bending performance (>1000 cycles). These results highlight the great potential of dual‐phase inorganic perovskite films in the development of optoelectronic devices, especially for flexible device applications.  相似文献   

4.
Self‐powered flexible photodetectors without an external power source can meet the demands of next‐generation portable and wearable nanodevices; however, the performance is far from satisfactory becuase of the limited match of flexible substrates and light‐sensitive materials with proper energy levels. Herein, a novel self‐powered flexible fiber‐shaped photodetector based on double‐twisted perovskite–TiO2–carbon fiber and CuO–Cu2O–Cu wire is designed and fabricated. The device shows an ultrahigh detectivity of 2.15 × 1013 Jones under the illumination of 800 nm light at zero bias. CuO–Cu2O electron block bilayer extends response range of perovskite from 850 to 1050 nm and suppresses dark current down to 10?11 A. The fast response speed of less than 200 ms is nearly invariable after dozens of cycles of bending at the extremely 90 bending angle, demonstrating excellent flexibility and bending stability. These parameters are comparable and even better than reported flexible and even rigid photodetectors. The present results suggest a promising strategy to design photodetectors with integrated function of self‐power, flexibility, and broadband response.  相似文献   

5.
Distinguishable detection of the ultraviolet, visible, and infrared spectrum is promising and significant for the super visual system of artificial intelligences. However, it is challenging to provide a photosensor with such broad spectral response ability. In this work, the ultraviolet, visible, and infrared spectrum is distinguished by developing serial photosensors based on perovskite/carbon nanotube hybrids. Oraganolead halide perovskites (CH3NH3PbX3) possess remarkable optoelectronic properties and tunable optical band gaps by changing the halogens, and integration with single‐walled carbon nanotubes can further improve their photoresponsivities. The CH3NH3PbCl3‐based photosensor shows a responsivity up to 105 A W?1 to ultraviolet and no obvious response to visible light, which is superior to that of most ultraviolet sensors. The CH3NH3PbBr3‐based photosensor exhibits a high responsivity to visible light. Serial devices of the two hybrid photosensors with comparable electric and sensory performances can distinguish the spectrum of ultraviolet, visible, and infrared even with varying light intensities. The photosensors also demonstrate excellent mechanical flexibility and bending stability. By taking full advantages of the oraganolead halide perovskites, this work provides flexible high‐responsivity photosensors specialized for ultraviolet, and gives a simple strategy for distinguishable detection of ultraviolet, visible, and infrared spectrum based on the serial flexible photosensors.  相似文献   

6.
Organic–inorganic halide perovskites are promising photodetector materials due to their strong absorption, large carrier mobility, and easily tunable bandgap. Up to now, perovskite photodetectors are mainly based on polycrystalline thin films, which have some undesired properties such as large defective grain boundaries hindering the further improvement of the detector performance. Here, perovskite thin‐single‐crystal (TSC) photodetectors are fabricated with a vertical p–i–n structure. Due to the absence of grain‐boundaries, the trap densities of TSCs are 10–100 folds lower than that of polycrystalline thin films. The photodetectors based on CH3NH3PbBr3 and CH3NH3PbI3 TSCs show low noise of 1–2 fA Hz?1/2, yielding a high specific detectivity of 1.5 × 1013 cm Hz1/2 W?1. The absence of grain boundaries reduces charge recombination and enables a linear response under strong light, superior to polycrystalline photodetectors. The CH3NH3PbBr3 photodetectors show a linear response to green light from 0.35 pW cm?2 to 2.1 W cm?2, corresponding to a linear dynamic range of 256 dB.  相似文献   

7.
Cadmium sulfide (CdS) has received widespread attention as the building block of optoelectronic devices due to its extraordinary optoelectronic properties, low work function, and excellent thermal and chemical stability. Here, a self‐powered flexible photodetector (PD) based on p‐Si/n‐CdS nanowires heterostructure is fabricated. By introducing the pyro‐phototronic effect derived from wurtzite structured CdS, the self‐powered PD shows a broadband response range, even beyond the bandgap limitation, from UV (325 nm) to near infrared (1550 nm) under zero bias with fast response speed. The light‐induced pyroelectric potential is utilized to modulate the optoelectronic processes and thus improve the photoresponse performance. Lasers with different wavelengths have different effects on the self‐powered PDs and corresponding working mechanisms are carefully investigated. Upon 325 nm laser illumination, the rise time and fall time of the self‐powered PD are 245 and 277 µs, respectively, which are faster than those of most previously reported CdS‐based nanostructure PDs. Meanwhile, the photoresponsivity R and specific detectivity D* regarding to the relative peak‐to‐peak current are both enhanced by 67.8 times, compared with those only based on the photovoltaic effect‐induced photocurrent. The self‐powered flexible PD with fast speed, stable, and broadband response is expected to have extensive applications in various environments.  相似文献   

8.
By fine‐tuning the crystal nucleation and growth process, a low‐temperature‐gradient crystallization method is developed to fabricate high‐quality perovskite CH3NH3PbBr3 single crystals with high carrier mobility of 81 ± 5 cm2 V?1 s?1 (>3 times larger than their thin film counterpart), long carrier lifetime of 899 ± 127 ns (>5 times larger than their thin film counterpart), and ultralow trap state density of 6.2 ± 2.7 × 109 cm?3 (even four orders of magnitude lower than that of single‐crystalline silicon wafers). In fact, they are better than perovskite single crystals reported in prior work: their application in photosensors gives superior detectivity as high as 6 × 1013 Jones, ≈10–100 times better than commercial sensors made of silicon and InGaAs. Meanwhile, the response speed is as fast as 40 µs, ≈3 orders of magnitude faster than their thin film devices. A large‐area (≈1300 mm2) imaging assembly composed of a 729‐pixel sensor array is further designed and constructed, showing excellent imaging capability thanks to its superior quality and uniformity. This opens a new possibility to use the high‐quality perovskite single‐crystal‐based devices for more advanced imaging sensors.  相似文献   

9.
Hybrid organic–inorganic perovskites have shown exceptional semiconducting properties and microstructural versatility for inexpensive, solution‐processable photovoltaic and optoelectronic devices. In this work, an all‐solution‐based technique in ambient environment for highly sensitive and high‐speed flexible photodetectors using high crystal quality perovskite nanowires grown on Kapton substrate is presented. At 10 V, the optimized photodetector exhibits a responsivity as high as 0.62 A W?1, a maximum specific detectivity of 7.3 × 1012 cm Hz1/2 W?1, and a rise time of 227.2 µs. It also shows remarkable photocurrent stability even beyond 5000 bending cycles. Moreover, a deposition of poly(methyl methacrylate) (PMMA) as a protective layer on the perovskite yields significantly better stability under ambient air operation: the PMMA‐protected devices are stable for over 30 days. This work demonstrates a cost‐effective fabrication technique for high‐performance flexible photodetectors and opens opportunities for research advancements in broadband and large‐scale flexible perovskite‐based optoelectronic devices.  相似文献   

10.
The chemical stabilities of hybrid perovskite materials demand further improvement toward long‐term and large‐scale photovoltaic applications. Herein, the enhanced chemical stability of CH3NH3PbI3 is reported by doping the divalent anion Se2? in the form of PbSe in precursor solutions to enhance the hydrogen‐bonding‐like interactions between the organic cations and the inorganic framework. As a result, in 100% humidity at 40 °C, the 10% w/w PbSe‐doped CH3NH3PbI3 films exhibited >140‐fold stability improvement over pristine CH3NH3PbI3 films. As the PbSe‐doped CH3NH3PbI3 films maintained the perovskite structure, a top efficiency of 10.4% with 70% retention after 700 h aging in ambient air is achieved with an unencapsulated 10% w/w PbSe:MAPbI3‐based cell. As a bonus, the incorporated Se2? also effectively suppresses iodine diffusion, leading to enhanced chemical stability of the silver electrodes.  相似文献   

11.
Flexible perovskite photodetectors are usually constructed on indium‐tin‐oxide‐coated polymer substrates, which are expensive, fragile, and not resistant to high temperature. Herein, for the first time, a high‐performance flexible perovskite photodetector is fabricated based on low‐cost carbon cloth via a facile solution processable strategy. In this device, perovskite microcrystal and Spiro‐OMeTAD (hole transporting material) blended film act as active materials for light detection, and carbon cloth serves as both a flexible substrate and a conductive electrode. The as‐fabricated photodetector shows a broad spectrum response from ultraviolet to near‐infrared light, high responsivity, fast response speed, long‐term stability, and self‐powered capability. Flexible devices show negligible degradation after several tens of bending cycles and at the extremely bending angle of 180°. This work promises a new technique to construct flexible, high‐performance photodetectors with low cost and self‐powered capability.  相似文献   

12.
Controlled growth of high‐quality patterned perovskite films on a large scale is essentially required for the application of this class of materials in functional integrated devices and systems. Herein, graphene‐assisted hydrophilic–hydrophobic surface‐induced growth of Cs‐doped FAPbI3 perovskite films with well‐patterned shapes by a one‐step spin‐coating process is developed. Such a facile fabrication technique is compatible with a range of spin‐coated perovskite materials, perovskite manufacturing processes, and substrates. By employing this growing method, controllable perovskite photodetector arrays are realized, which have not only prominent photoresponse properties with a responsivity and specific detectivity of 4.8 AW?1 and 4.2 × 1012 Jones, respectively, but also relatively small pixel‐to‐pixel variation. Moreover, the photodetectors array can function as an effective visible light image sensor with a decent spatial resolution. Holding the above merits, the proposed technique provides a convenient and effective pathway for large‐scale preparation of patterned perovskite films for multifunctional application purposes.  相似文献   

13.
Organolead trihalide perovskite MAPbI3 shows a distinctive combination of properties such as being ferroelectric and semiconducting, with ion migration effects under poling by electric fields. The combination of its ferroelectric and semiconducting nature is used to make a light harvesting, self‐powered tactile sensor. This sensor interfaces ZnO nanosheets as a pressure‐sensitive drain on the MAPbI3 film and once poled is operational for at least 72 h with just light illumination. The sensor is monolithic in structure, has linear response till 76 kPa, and is able to operate continuously as the energy harvesting mechanism is decoupled from its pressure sensing mechanism. It has a sensitivity of 0.57 kPa?1, which can be modulated by the strength of the poling field. The understanding of these effects in perovskite materials and their application in power source free devices are of significance to a wide array of fields where these materials are being researched and applied.  相似文献   

14.
Ferroelectric materials have demonstrated novel photovoltaic effect to scavenge solar energy. However, most of the ferroelectric materials with wide bandgaps (2.7–4 eV) suffer from low power conversion efficiency of less than 0.5% due to absorbing only 8–20% of solar spectrum. Instead of harvesting solar energy, these ferroelectric materials can be well suited for photodetector applications, especially for sensing near‐UV irradiations. Here, a ferroelectric BaTiO3 film‐based photodetector is demonstrated that can be operated without using any external power source and a fast sensing of 405 nm light illumination is enabled. As compared with photovoltaic effect, both the responsivity and the specific detectivity of the photodetector can be dramatically enhanced by larger than 260% due to the light‐induced photovoltaic–pyroelectric coupled effect. A self‐powered photodetector array system can be utilized to achieve spatially resolved light intensity detection by recording the output voltage signals as a mapping figure.  相似文献   

15.
Organolead trihalide perovskites have drawn substantial interest for photovoltaic and optoelectronic applications due to their remarkable physical properties and low processing cost. However, perovskite thin films suffer from low carrier mobility as a result of their structural imperfections such as grain boundaries and pinholes, limiting their device performance and application potential. Here we demonstrate a simple and straightforward synthetic strategy based on coupling perovskite films with embedded single‐walled carbon nanotubes. We are able to significantly enhance the hole and electron mobilities of the perovskite film to record‐high values of 595.3 and 108.7 cm2 V?1 s?1, respectively. Such a synergistic effect can be harnessed to construct ambipolar phototransistors with an ultrahigh detectivity of 3.7 × 1014 Jones and a responsivity of 1 × 104 A W?1, on a par with the best devices available to date. The perovskite/carbon nanotube hybrids should provide a platform that is highly desirable for fields as diverse as optoelectronics, solar energy conversion, and molecular sensing.  相似文献   

16.
Flexible devices are garnering substantial interest owing to their potential for wearable and portable applications. Here, flexible and self-powered photodetector arrays based on all-inorganic perovskite quantum dots (QDs) are reported. CsBr/KBr-mediated CsPbBr3 QDs possess improved surface morphology and crystallinity with reduced defect densities, in comparison with the pristine ones. Systematic material characterizations reveal enhanced carrier transport, photoluminescence efficiency, and carrier lifetime of the CsBr/KBr-mediated CsPbBr3 QDs. Flexible photodetector arrays fabricated with an optimum CsBr/KBr treatment demonstrate a high open-circuit voltage of 1.3 V, responsivity of 10.1 A W−1, specific detectivity of 9.35 × 1013 Jones, and on/off ratio up to ≈104. Particularly, such performance is achieved under the self-powered operation mode. Furthermore, outstanding flexibility and electrical stability with negligible degradation after 1600 bending cycles (up to 60°) are demonstrated. More importantly, the flexible detector arrays exhibit uniform photoresponse distribution, which is of much significance for practical imaging systems, and thus promotes the practical deployment of perovskite products.  相似文献   

17.
All‐inorganic halide perovskites (IHPs) have attracted enormous attention due to their intrinsically high optical absorption coefficient and superior ambient stabilities. However, the photosensitivity of IHP‐based photodetectors is still restricted by their poor conductivities. Here, a facile design of hybrid phototransistors based on the CsPbBr3 thin film and indium tin oxide (ITO) nanowires (NWs) integrated into a InGaZnO channel in order to achieve both high photoresponsivity and fast response is reported. The metallic ITO NWs are employed as electron pumps and expressways to efficiently extract photocarriers from CsPbBr3 and inject electrons into InGaZnO. The obtained device exhibits the outstanding responsivity of 4.9 × 106 A W?1, which is about 100‐fold better than the previous best results of CsPbBr3‐based photodetectors, together with the fast response (0.45/0.55 s), long‐term stability (200 h in ambient), and excellent mechanical flexibility. By operating the phototransistor in the depletion regime, an ultrahigh specific detectivity up to 7.6 × 1013 Jones is achieved. More importantly, the optimized spin‐coating manufacturing process is highly beneficial for achieving uniform InGaZnO‐ITO/perovskite hybrid films for high‐performance flexible detector arrays. All these results can not only indicate the potential of these hybrid phototransistors but also provide a valuable insight into the design of hybrid material systems for high‐performance photodetection.  相似文献   

18.
Ultraviolet‐visible‐near infrared (UV‐Vis‐NIR) broadband detection is important for image sensing, communication, and environmental monitoring, yet remains as a challenge in achieving high external quantum efficiency (EQE) in the broad spectrum range. Herein, sensitive broadband integrated photodetectors (PDs) with high EQE levels are reported. The organic bulk‐heterojunction (OBHJ) layer, based on a NIR sensitive organic acceptor, is employed to extend the response spectrum of the perovskite PDs. A key strategy of introducing dual electron transport materials respectively for Vis and NIR regions into the active layer of integrated PDs is applied. Further combined with the proper energy level alignment and reasonable distribution of PC61BM in the active layer, the extraction and transport of photo induced charges in between perovskite and OBHJ is promoted efficiently. The integrated PD with the optimized structure exhibits an EQE mostly beyond 70% in the Vis–NIR region, which is the highest value among the ever reported solution‐processable broadband PDs. The highest responsivity is 0.444 and 0.518 A W?1 in the Vis and NIR region, respectively. The specific detectivity is beyond 1010 Jones in the range from 340 to 940 nm, enabling the device to detect weak signals in the UV to NIR broad region.  相似文献   

19.
In the present work, the exploration of photodetectors (PDs) based on CsPbI3 nanotubes are reported. The as‐prepared CsPbI3 nanotubes can be stable for more than 2 months under air conditions. It is found that, in comparison to the nanowires, nanobelts, and nanosheets, the nanotubes can be advantageous to be used as the functional units for PDs, which is mainly attributed to the enhanced light absorption ability induced by the light trapping effect within the tube cavity. As a proof of concept, the as‐constructed PDs based on CsPbI3 nanotube present an overall excellent performance with a responsivity (Rλ), external quantum efficiency (EQE) and detectivity of 1.84 × 103 A W?1, 5.65 × 105% and 9.99 × 1013 Jones, respectively, which are all comparable to state‐of‐the‐art ones for all‐inorganic perovskite PDs.  相似文献   

20.
Organic–inorganic hybrid perovskite materials exhibit a variety of physical properties. Pronounced coupling between phonon, organic cations, and the inorganic framework suggest that these materials exhibit strong light–matter interactions. The photoinduced strain of CH3NH3PbBr3 is investigated using high‐resolution and contactless in situ Raman spectroscopy. Under illumination, the material exhibits large blue shifts in its Raman spectra that indicate significant structural deformations (i.e., photostriction). From these shifts, the photostrictive coefficient of CH3NH3PbBr3 is calculated as 2.08 × 10?8 m2 W?1 at room temperature under visible light illumination. The significant photostriction of CH3NH3PbBr3 is attributed to a combination of the photovoltaic effect and translational symmetry loss of the molecular configuration via strong translation–rotation coupling. Unlike CH3NH3PbI3, it is noted that the photostriction of CH3NH3PbBr3 is extremely stable, demonstrating no signs of optical decay for at least 30 d. These results suggest the potential of CH3NH3PbBr3 for applications in next‐generation optical micro‐electromechanical devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号