首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contact electrification (CE) (or triboelectrification) is a well‐known phenomenon, and the identity of the charge carriers and their transfer mechanism have been discussed for decades. Recently, the species of transferred charges in the CE between a metal and a ceramic was revealed as electron transfer and its subsequent release is dominated by the thermionic emission process. Here, the release of CE‐induced electrostatic charges on a dielectric surface under photon excitation is studied by varying the light intensity and wavelength, but under no significant raise in temperature. The results suggest that there exists a threshold photon energy for releasing the triboelectric charges from the surface, which is 4.1 eV (light wavelength at 300 nm) for SiO2 and 3.4 eV (light wavelength at 360 nm) for PVC; photons with energy smaller than this cannot effectively excite the surface electrostatic charges. This process is attributed to the photoelectron emission of the charges trapped in the surface states of the dielectric material. Further, a photoelectron emission model is proposed to describe light‐induced charge decay on a dielectric surface. The findings provide an additional strong evidence about the electron transfer process in the CE between metals and dielectrics as well as polymers.  相似文献   

2.
The phenomenon of contact electrification (CE) has been known for thousands of years, but the nature of the charge carriers and their transfer mechanisms are still under debate. Here, the CE and triboelectric charging process are studied for a metal–dielectric case at different thermal conditions by using atomic force microscopy and Kelvin probe force microscopy. The charge transfer process at the nanoscale is found to follow the modified thermionic‐emission model. In particular, the focus here is on the effect of a temperature difference between two contacting materials on the CE. It is revealed that hotter solids tend to receive positive triboelectric charges, while cooler solids tend to be negatively charged, which suggests that the temperature‐difference‐induced charge transfer can be attributed to the thermionic‐emission effect, in which the electrons are thermally excited and transfer from a hotter surface to a cooler one. Further, a thermionic‐emission band‐structure model is proposed to describe the electron transfer between two solids at different temperatures. The findings also suggest that CE can occur between two identical materials owing to the existence of a local temperature difference arising from the nanoscale rubbing of surfaces with different curvatures/roughness.  相似文献   

3.
As previously demonstrated, contact‐electrification (CE) is strongly dependent on temperature, however the highest temperature in which a triboelectric nanogenerator (TENG) can still function is unknown. Here, by designing and preparing a rotating free‐standing mode Ti/SiO2 TENG, the relationship between CE and temperature is revealed. It is found that the dominant deterring factor of CE at high temperatures is the electron thermionic emission. Although it is normally difficult for CE to occur at temperatures higher than 583 K, the working temperature of the rotating TENG can be raised to 673 K when thermionic emission is prevented by direct physical contact of the two materials via preannealing. The surface states model is proposed for explaining the experimental phenomenon. Moreover, the developed electron cloud‐potential well model accounts for the CE mechanism with temperature effects for all types of materials. The model indicates that besides thermionic emission of electrons, the atomic thermal vibration also influences CE. This study is fundamentally important for understanding triboelectrification, which will impact the design and improve the TENG for practical applications in a high temperature environment.  相似文献   

4.
As a well-known phenomenon, contact electrification (CE) has been studied for decades. Although recent studies have proven that CE between two solids is primarily due to electron transfer, the mechanism for CE between liquid and solid remains controversial. The CE process between different liquids and polytetrafluoroethylene (PTFE) film is systematically studied to clarify the electrification mechanism of the solid–liquid interface. The CE between deionized water and PTFE can produce a surface charges density in the scale of 1 nC cm−2, which is ten times higher than the calculation based on the pure ion-transfer model. Hence, electron transfer is likely the dominating effect for this liquid–solid electrification process. Meanwhile, as ion concentration increases, the ion adsorption on the PTFE hinders electron transfer and results in the suppression of the transferred charge amount. Furthermore, there is an obvious charge transfer between oil and PTFE, which further confirms the presence of electron transfer between liquid and solid, simply because there are no ions in oil droplets. It is demonstrated that electron transfer plays the dominant role during CE between liquids and solids, which directly impacts the traditional understanding of the formation of an electric double layer (EDL) at a liquid–solid interface in physical chemistry.  相似文献   

5.
Residual stress stability and near‐surface microstructures in high temperature fatigued mechanically surface treated Ti‐6Al‐4V It is well known that mechanical surface treatments, such as deep rolling, shot peening and laser shock peening, can significantly improve the fatigue behavior of highly‐stressed metallic components. Deep rolling is particularly attractive since it is possible to generate, near the surface, deep compressive residual stresses and work hardened layers while retaining a relatively smooth surface finish. In the present investigation, the effect of deep rolling on the low‐cycle and high‐cycle fatigue behavior of a Ti‐6Al‐4V alloy is examined, with particular emphasis on the thermal and mechanical stability of the residual stress states and the near‐surface microstructures. Preliminary results on laser shock peened Ti‐6Al‐4V are also presented for comparison. Particular emphasis is devoted to the question of whether such surface treatments are effective for improving the fatigue properties at elevated temperatures up to ~450 °C, i.e., at an homologous temperature of ~0.4 T/Tm (where Tm is the melting temperature). Based on cyclic deformation and stress/life (S/N) fatigue behavior, together with the X‐ray diffraction and in situ transmission electron microscopy observations of the microstructure, it was found that deep rolling can be quite effective in retarding the initiation and initial propagation of fatigue cracks in Ti‐6Al‐4V at such higher temperatures, despite the almost complete relaxation of the near‐surface residual stresses. In the absence of such stresses, it is shown that the near‐surface microstructures, which in Ti‐6Al‐4V consist of a layer of work hardened nanoscale grains, play a critical role in the enhancement of fatigue life by mechanical surface treatment.  相似文献   

6.
Solar photocatalysis is a potential solution to satisfying energy demand and its resulting environmental impact. However, the low electron–hole separation efficiency in semiconductors has slowed the development of this technology. The effect of defects on electron–hole separation is not always clear. A model atomically thin structure of single‐unit‐cell Bi3O4Br nanosheets with surface defects is proposed to boost photocatalytic efficiency by simultaneously promoting bulk‐ and surface‐charge separation. Defect‐rich single‐unit‐cell Bi3O4Br displays 4.9 and 30.9 times enhanced photocatalytic hydrogen evolution and nitrogen fixation activity, respectively, than bulk Bi3O4Br. After the preparation of single‐unit‐cell structure, the bismuth defects are controlled to tune the oxygen defects. Benefiting from the unique single‐unit‐cell architecture and defects, the local atomic arrangement and electronic structure are tuned so as to greatly increase the charge separation efficiency and subsequently boost photocatalytic activity. This strategy provides an accessible pathway for next‐generation photocatalysts.  相似文献   

7.
Heteroepitaxial coupling at complex oxide interfaces presents a powerful tool for engineering the charge degree of freedom in strongly correlated materials, which can be utilized to achieve tailored functionalities that are inaccessible in the bulk form. Here, the charge‐transfer effect between two strongly correlated oxides, Sm0.5Nd0.5NiO3 (SNNO) and La0.67Sr0.33MnO3 (LSMO), is exploited to realize a giant enhancement of the ferroelectric field effect in a prototype Mott field‐effect transistor. By switching the polarization field of a ferroelectric Pb(Zr,Ti)O3 (PZT) gate, nonvolatile resistance modulation in the Mott transistors with single‐layer SNNO and bilayer SNNO/LSMO channels is induced. For the same channel thickness, the bilayer channels exhibit up to two orders of magnitude higher resistance‐switching ratio at 300 K, which is attributed to the intricate interplay between the charge screening at the PZT/SNNO interface and the charge transfer at the SNNO/LSMO interface. X‐ray absorption spectroscopy and X‐ray photoelectron spectroscopy studies of SNNO/LSMO heterostructures reveal about 0.1 electron per 2D unit cell transferred between the interfacial Mn and Ni layers, which is corroborated by first‐principles density functional theory calculations. The study points to an effective strategy to design functional complex oxide interfaces for developing high‐performance nanoelectronic and spintronic applications.  相似文献   

8.
The significantly reduced tissue autofluorescence and scattering in the NIR‐II region (1000–1700 nm) opens many exciting avenues for detailed investigation of biological processes in vivo. However, the existing NIR‐II fluorescent agents, including many molecular dyes and inorganic nanomaterials, are primarily focused on complicated synthesis routes and unknown immunogenic responses with limited potential for clinical translation. Herein, the >1000 nm tail emission of conventional biocompatible NIR cyanine dyes with emission peaks at 700–900 nm is systematically investigated, and a type of bright dye for NIR‐II imaging with high potential for accelerating clinical translation is identified. The asymmetry of the π domain in the S1 state of NIR cyanine dyes is proven to result in a twisted intramolecular charge‐transfer process and NIR‐II emission, establishing a general rule to guide future NIR‐I/II fluorophore synthesis. The screened NIR dyes are identified to possess a bright emission tail in the NIR‐II region along with high quantum yield, high molar‐extinction coefficient, rapid fecal excretion, and functional groups amenable for bioconjugation. As a result, NIR cyanine dyes can be used for NIR‐II imaging to afford superior contrast and real‐time imaging of several biological models, facilitating the translation of NIR‐II bioimaging to clinical theranostic applications.  相似文献   

9.
Following the rejuvenation of 3D organic–inorganic hybrid perovskites, like CH3NH3PbI3, (quasi)‐2D Ruddlesden–Popper soft halide perovskites R2An?1PbnX3n+1 have recently become another focus in the optoelectronic and photovoltaic device community. Although quasi‐2D perovskites were first introduced to stabilize optoelectronic/photovoltaic devices against moisture, more interesting properties and device applications, such as solar cells, light‐emitting diodes, white‐light emitters, lasers, and polaritonic emission, have followed. While delicate engineering design has pushed the performance of various devices forward remarkably, understanding of the fundamental properties, especially the charge‐transfer process, electron–phonon interactions, and the growth mechanism in (quasi)‐2D halide perovskites, remains limited and even controversial. Here, after reviewing the current understanding and the nexus between optoelectronic/photovoltaic properties of 2D and 3D halide perovskites, the growth mechanisms, charge‐transfer processes, vibrational properties, and electron–phonon interactions of soft halide perovskites, mainly in quasi‐2D systems, are discussed. It is suggested that single‐crystal‐based studies are needed to deepen the understanding of the aforementioned fundamental properties, and will eventually contribute to device performance.  相似文献   

10.
The triboelectric generator (TEG) is a cost‐effective, multi‐fabricated, friendly mechanical‐energy‐harvesting device. The traditional TEG, generally formed by two triboelectric materials in multilayers or a simple pattern, generated triboelectricity as it worked in the cycling contact–separation operation. This paper demonstrates a novel, high‐aspect‐ratio, microneedle (MN)‐structured polydimethylsiloxane (PDMS)‐based triboelectric generator (MN‐TEG) by means of a low‐cost, simple fabrication using CO2 laser ablation on the polymethyl methacrylate substrate and a molding process. The MN‐TEG, consisting of an aluminum foil and a microneedle‐structured PDMS (MN‐PDMS) film, generates an output performance with an open‐circuit voltage up to 102.8 V, and a short‐circuit current of 43.1 µA, corresponding to the current density of 1.5 µA cm?2. With introducing MN‐PDMS into the MN‐TEG, a great increase of randomly closed bending–friction–deformation (BFD) behavior of MNs leads to highly enhanced triboelectric performance of the MN‐TEG. The BFD keeps increasingly on in‐contact between MN with Al that results in enhancement of electrical capacitance of PDMS. The effect of aspect ratio and density of MN morphology on the output performance of MN‐PDMS TEG is studied further. The MN‐TEG can rapidly charge electric energy on a 0.1 µF capacitor up to 2.1 V in about 0.56 s. The MN‐TEG source under tapping can light up 53 light‐emitting diodes with different colors, connected in series.  相似文献   

11.
Interfacial engineering of perovskite solar cells (PSCs) is attracting intensive attention owing to the charge transfer efficiency at an interface, which greatly influences the photovoltaic performance. This study demonstrates the modification of a TiO2 electron‐transporting layer with various amino acids, which affects charge transfer efficiency at the TiO2/CH3NH3PbI3 interface in PSC, among which the l ‐alanine‐modified cell exhibits the best power conversion efficiency with 30% enhancement. This study also shows that the (110) plane of perovskite crystallites tends to align in the direction perpendicular to the amino‐acid‐modified TiO2 as observed in grazing‐incidence wide‐angle X‐ray scattering of thin CH3NH3PbI3 perovskite film. Electrochemical impedance spectroscopy reveals less charge transfer resistance at the TiO2/CH3NH3PbI3 interface after being modified with amino acids, which is also supported by the lower intensity of steady‐state photoluminescence (PL) and the reduced PL lifetime of perovskite. In addition, based on the PL measurement with excitation from different side of the sample, amino‐acid‐modified samples show less surface trapping effect compared to the sample without modification, which may also facilitate charge transfer efficiency at the interface. The results suggest that appropriate orientation of perovskite crystallites at the interface and trap‐passivation are the niche for better photovoltaic performance.  相似文献   

12.
As emerging efficient emitters, metal‐halide perovskites offer the intriguing potential to the low‐cost light emitting devices. However, semiconductors generally suffer from severe luminescence quenching due to insufficient confinement of excitons (bound electron–hole pairs). Here, Sn‐triggered extrinsic self‐trapping of excitons in bulk 2D perovskite crystal, PEA2PbI4 (PEA = phenylethylammonium), is reported, where exciton self‐trapping never occurs in its pure state. By creating local potential wells, isoelectronic Sn dopants initiate the localization of excitons, which would further induce the large lattice deformation around the impurities to accommodate the self‐trapped excitons. With such self‐trapped states, the Sn‐doped perovskites generate broadband red‐to‐near‐infrared (NIR) emission at room temperature due to strong exciton–phonon coupling, with a remarkable quantum yield increase from 0.7% to 6.0% (8.6 folds), reaching 42.3% under a 100 mW cm?2 excitation by extrapolation. The quantum yield enhancement stems from substantial higher thermal quench activation energy of self‐trapped excitons than that of free excitons (120 vs 35 meV). It is further revealed that the fast exciton diffusion involves in the initial energy transfer step by transient absorption spectroscopy. This dopant‐induced extrinsic exciton self‐trapping approach paves the way for extending the spectral range of perovskite emitters, and may find emerging application in efficient supercontinuum sources.  相似文献   

13.
Sluggish kinetics of the multielectron transfer process is still a bottleneck for efficient oxygen evolution reaction (OER) activity, and the reduction of reaction overpotential is crucial to boost reaction kinetics. Herein, a correlation between the OER overpotential and the cobalt‐based electrode composition in a “Microparticles‐in‐Spider Web” (MSW) superstructure electrode is revealed. The overpotential is dramatically decreased first and then slightly increased with the continuous increase ratio of Co/Co3O4 in the cobalt‐based composite electrode, corresponding to the dynamic change of electrochemically active surface area and charge‐transfer resistance with the electrode composition. As a proof‐of‐concept, the optimized electrode displays a low overpotential of 260 mV at 10.0 mA cm?2 in alkaline conditions with a long‐time stability. This electrochemical performance is comparable and even superior to the most currently reported Co‐based OER electrocatalysts. The remarkable electrocatalytic activity is attributed to the optimization of the electrochemically active sites and electron transfer in the MSW superstructure. Theoretical calculations identify that the metallic Co and Co3O4 surface catalytic sites play a vital role in improving electron transport and reaction Gibbs free energies for reducing overpotential, respectively. A general way of boosting OER kinetics via optimizing the electrode configurations to mitigate reaction overpotential is offered in this study.  相似文献   

14.
Porous single crystals are promising candidates for solar fuel production owing to their long range charge diffusion length, structural coherence, and sufficient reactive sites. Here, a simple template‐free method of growing a selectively branched, 2D anatase TiO2 porous single crystalline nanostructure (PSN) on fluorine‐doped tin oxide substrate is demonstrated. An innovative ion exchange–induced pore‐forming process is designed to successfully create high porosity in the single‐crystalline nanostructure with retention of excellent charge mobility and no detriment to crystal structure. PSN TiO2 film delivers a photocurrent of 1.02 mA cm?2 at a very low potential of 0.4 V versus reversible hydrogen electrode (RHE) for photo‐electrochemical water splitting, closing to the theoretical value of TiO2 (1.12 mA cm?2). Moreover, the current–potential curve featuring a small potential window from 0.1 to 0.4 V versus RHE under one‐sun illumination has a near‐ideal shape predicted by the Gartner Model, revealing that the charge separation and surface reaction on the PSN TiO2 photoanode are very efficient. The photo‐electrochemical water splitting performance of the films indicates that the ion exchange–assisted synthesis strategy is effective in creating large surface area and single‐crystalline porous photoelectrodes for efficient solar energy conversion.  相似文献   

15.
Although LiNi0.5Mn1.5O4 (LNMO) high‐voltage spinel is a promising candidate for a next generation cathode material, LNMO/graphite full cells experience severe capacity fading caused by degradation reactions at electrode/electrolyte interfaces and consequent active Li+ loss in the cells. In this study, it is first reported that in situ formation of a Ti–O enriched cathode/electrolyte interfacial (CEI) layer on a Ti‐substituted LiNi0.5Mn1.2Ti0.3O4 (LNMTO) spinel cathode effectively mitigates electrolyte oxidation and transition metal dissolution, which improves the Coulombic efficiency and cycle life of LNMTO/graphite full cells. The Ti–O enriched CEI layer is produced in situ during an initial cycling of LNMTO as a result of selective Mn and Ni dissolution at its surface, as evidenced by various surface characterizations using X‐ray photoelectron spectroscopy, transmission electron microscopy, time‐of‐flight secondary ion mass spectrometry, Raman spectroscopy, and synchrotron‐based soft X‐ray absorption spectroscopy. The Ti–O enriched CEI has an advantage over traditional LNMO powder coatings, namely the formation of conformal CEI without compromising electronic conduction pathways between cathode particles.  相似文献   

16.
All‐solution‐processed pure formamidinium‐based perovskite light‐emitting diodes (PeLEDs) with record performance are successfully realized. It is found that the FAPbBr3 device is hole dominant. To achieve charge carrier balance, on the anode side, PEDOT:PSS 8000 is employed as the hole injection layer, replacing PEDOT:PSS 4083 to suppress the hole current. On the cathode side, the solution‐processed ZnO nanoparticle (NP) is used as the electron injection layer in regular PeLEDs to improve the electron current. With the smallest ZnO NPs (2.9 nm) as electron injection layer (EIL), the solution‐processed PeLED exhibits a highest forward viewing power efficiency of 22.3 lm W?1, a peak current efficiency of 21.3 cd A?1, and an external quantum efficiency of 4.66%. The maximum brightness reaches a record 1.09 × 105 cd m?2. A record lifetime T50 of 436 s is achieved at the initial brightness of 10 000 cd m?2. Not only do PEDOT:PSS 8000 HIL and ZnO NPs EIL modulate the injected charge carriers to reach charge balance, but also they prevent the exciton quenching at the interface between the charge injection layer and the light emission layer. The subbandgap turn‐on voltage is attributed to Auger‐assisted energy up‐conversion process.  相似文献   

17.
Sub‐bandgap electroluminescence in organic light emitting diodes is a phenomenon in which the electroluminescence turn‐on voltage is lower than the bandgap voltage of the emitter. Based on the results of transient electroluminescence (EL) and photoluminescence and electroabsorption spectroscopy measurements, it is concluded that in rubrene/C60 devices, charge transfer excitons are generated at the rubrene/C60 interface under sub‐bandgap driving conditions, leading to the formation of triplet excitons, and sub‐bandgap EL is the result of the subsequent triplet–triplet annihilation process.  相似文献   

18.
Different from graphene with the highly stable sp2‐hybridized carbon atoms, which shows poor controllability for constructing strong interactions between graphene and guest metal, graphdiyne has a great potential to be engineered because its high‐reactive acetylene linkages can effectively chelate metal atoms. Herein, a hydrogen‐substituted graphdiyne (HsGDY) supported metal catalyst system through in situ growth of Cu3Pd nanoalloys on HsGDY surface is developed. Benefiting from the strong metal‐chelating ability of acetylenic linkages, Cu3Pd nanoalloys are intimately anchored on HsGDY surface that accordingly creates a strong interaction. The optimal HsGDY‐supported Cu3Pd catalyst (HsGDY/Cu3Pd‐750) exhibits outstanding electrocatalytic activity for the oxygen reduction reaction (ORR) with an admirable half‐wave potential (0.870 V), an impressive kinetic current density at 0.75 V (57.7 mA cm?2) and long‐term stability, far outperforming those of the state‐of‐the‐art Pt/C catalyst (0.859 V and 15.8 mA cm?2). This excellent performance is further highlighted by the Zn–air battery using HsGDY/Cu3Pd‐750 as cathode. Density function theory calculations show that such electrocatalytic performance is attributed to the strong interaction between Cu3Pd and C?C bonds of HsGDY, which causes the asymmetric electron distribution on two carbon atoms of C?C bond and the strong charge transfer to weaken the shoulder‐to‐shoulder π conjugation, eventually facilitating the ORR process.  相似文献   

19.
Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal–organic frameworks (MOFs) have attracted much attention as CO2 photoreduction‐related catalysts, owing to their unique electronic band structures, excellent CO2 adsorption capacities, and tailorable light‐absorption abilities. Recent advances on the design, synthesis, and CO2 reduction applications of MOF‐based photocatalysts are discussed here, beginning with the introduction of the characteristics of high‐efficiency photocatalysts and structural advantages of MOFs. The roles of MOFs in CO2 photoreduction systems as photocatalysts, photocatalytic hosts, and cocatalysts are analyzed. Detailed discussions focus on two constituents of pure MOFs (metal clusters such as Ti–O, Zr–O, and Fe–O clusters and functional organic linkers such as amino‐modified, photosensitizer‐functionalized, and electron‐rich conjugated linkers) and three types of MOF‐based composites (metal–MOF, semiconductor–MOF, and photosensitizer–MOF composites). The constituents, CO2 adsorption capacities, absorption edges, and photocatalytic activities of these photocatalysts are highlighted to provide fundamental guidance to rational design of efficient MOF‐based photocatalyst materials for CO2 reduction. A perspective of future research directions, critical challenges to be met, and potential solutions in this research field concludes the discussion.  相似文献   

20.
A critical bottleneck limiting the performance of rechargeable zinc–air batteries lies in the inefficient bifunctional electrocatalysts for the oxygen reduction and evolution reactions at the air electrodes. Hybridizing transition‐metal oxides with functional graphene materials has shown great advantages due to their catalytic synergism. However, both the mediocre catalytic activity of metal oxides and the restricted 2D mass/charge transfer of graphene render these hybrid catalysts inefficient. Here, an effective strategy combining anion substitution, defect engineering, and the dopant effect to address the above two critical issues is shown. This strategy is demonstrated on a hybrid catalyst consisting of sulfur‐deficient cobalt oxysulfide single crystals and nitrogen‐doped graphene nanomeshes (CoO0.87S0.13/GN). The defect chemistries of both oxygen‐vacancy‐rich, nonstoichiometric cobalt oxysulfides and edge‐nitrogen‐rich graphene nanomeshes lead to a remarkable improvement in electrocatalytic performance, where CoO0.87S0.13/GN exhibits strongly comparable catalytic activity to and much better stability than the best‐known benchmark noble‐metal catalysts. In application to quasi‐solid‐state zinc–air batteries, CoO0.87S0.13/GN as a freestanding catalyst assembly benefits from both structural integrity and enhanced charge transfer to achieve efficient and very stable cycling operation over 300 cycles with a low discharge–charge voltage gap of 0.77 V at 20 mA cm?2 under ambient conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号