首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Separation membranes with higher molecular weight cut-offs are needed to separate ions and small molecules from a mixed feed. The molecular sieving phenomenon can be utilized to separate smaller species with well-defined dimensions from a mixture. Here, the formation of freestanding polyimine nanofilms with thicknesses down to ≈14 nm synthesized via self-assembly of pre-synthesized imine oligomers is reported. Nanofilms are fabricated at the water–xylene interface followed by reversible condensation of polymerization according to the Pieranski theory. Polyimine nanofilm composite membranes are made via transferring the freestanding nanofilm onto ultrafiltration supports. High water permeance of 49.5 L m-2 h−1 bar−1 is achieved with a complete rejection of brilliant blue-R (BBR; molecular weight = 825 g mol−1) and no more than 10% rejection of monovalent and divalent salts. However, for a mixed feed of BBR dye and monovalent salt, the salt rejection is increased to ≈18%. Membranes are also capable of separating small dyes (e.g., methyl orange; MO; molecular weight = 327 g mol−1) from a mixed feed of BBR and MO. Considering a thickness of ≈14 nm and its separation efficiency, the present membrane has significance in separation processes.  相似文献   

2.
Water transport rate in network membranes is inversely correlated to thickness, thus superior permeance is achievable with ultrathin membranes prepared by complicated methods circumventing nanofilm weakness and defects. Conferring ultrahigh permeance to easily prepared thicker membranes remains challenging. Here, a tetrakis(hydroxymethyl) phosphonium chloride (THPC) monomer is discovered that enables straightforward modification of polyamide composite membranes. Water permeance of the modified membrane is ≈6 times improved, give rising to permeability (permeance × thickness) one magnitude higher than state-of-the-art polymer nanofiltration membranes. Meanwhile, the membrane exhibits good rejection (RNa2SO4 = 98%) and antibacterial properties under crossflow conditions. THPC modification not only improves membrane hydrophilicity, but also creates additional angstrom-scale channels in polyamide membranes for unimpeded transport of water. This unique mechanism provides a paradigm shift in facile preparation of ultrapermeable membranes with unreduced thickness for clean water and desalination.  相似文献   

3.
The van der Waals forces across a very thin liquid layer (nanofilm) in contact with a plane solid wall make the liquid nonhomogeneous. The dynamics of such flat liquid nanofilms is studied in isothermal case.The Navier–Stokes equations are unable to describe fluid motions in very thin films. The notion of surface free energy of a sharp interface separating gas and liquid layer is disqualified. The concept of disjoining pressure replaces the model of surface energy. In the nanofilm a supplementary free energy must be considered as a functional of the density.The equation of fluid motions along the nanofilm is obtained through the Hamilton variational principle by adding, to the conservative forces, the forces of viscosity in lubrication approximation. The evolution equation of the film thickness is deduced and takes into account the variation of the disjoining pressure along the layer.  相似文献   

4.
Membrane separation technologies are of great interest in industrial processes such as water purification, gas separation, and materials synthesis. However, commercial filtration membranes have broad pore size distributions, leading to poor size cutoff properties. In this work, mesoporous silica thin membranes with uniform and large vertical mesochannels are synthesized via a simple biphase stratification growth method, which possess an intact structure over centimeter size, ultrathin thickness (≤50 nm), high surface areas (up to 1420 m2 g?1), and tunable pore sizes from ≈2.8 to 11.8 nm by adjusting the micelle parameters. The nanofilter devices based on the free‐standing mesoporous silica thin membranes show excellent performances in separating differently sized gold nanoparticles (>91.8%) and proteins (>93.1%) due to the uniform pore channels. This work paves a promising way to develop new membranes with well‐defined pore diameters for highly efficient nanosize‐based separation at the macroscale.  相似文献   

5.
Atomically thin single crystals, without grain boundaries and associated defect clusters, represent ideal systems to study and understand intrinsic defects in materials, but probing them collectively over large area remains nontrivial. In this study, the authors probe nanoscale mass transport across large‐area (≈0.2 cm2) single‐crystalline graphene membranes. A novel, polymer‐free picture frame assisted technique, coupled with a stress‐inducing nickel layer is used to transfer single crystalline graphene grown on silicon carbide substrates to flexible polycarbonate track etched supports with well‐defined cylindrical ≈200 nm pores. Diffusion‐driven flow shows selective transport of ≈0.66 nm hydrated K+ and Cl? ions over ≈1 nm sized small molecules, indicating the presence of selective sub‐nanometer to nanometer sized defects. This work presents a framework to test the barrier properties and intrinsic quality of atomically thin materials at the sub‐nanometer to nanometer scale over technologically relevant large areas, and suggests the potential use of intrinsic defects in atomically thin materials for molecular separations or desalting.  相似文献   

6.
This paper reports on measurements of in-plane thermal conductivities, electrical conductivities, and Lorentz number of two microfabricated, suspended, nanosized thin films with a thickness of 28 nm. The effect of the film thickness on the in-plane thermal conductivity is examined by measuring other nanofilm samples with a thickness of 40 nm. The experimental results show that the electrical conductivity, resistance–temperature coefficient, and in-plane thermal conductivity of the nanofilms are much smaller than the corresponding bulk values from 77 to 330 K. However, the Lorentz number of the nanofilms is about two times that of the bulk value at room temperature, and even up to three times that of the bulk value at 77 K. These results indicate that the relation between the thermal conductivity and electrical conductivity of the nanofilms does not follow the Wiedemann–Franz law for bulk metallic materials.  相似文献   

7.
《工程(英文)》2020,6(5):577-584
Understanding the transport resistance of water molecules in polyamide (PA) reverse osmosis (RO) membranes at the molecular level is of great importance in guiding the design, preparation, and applications of these membranes. In this work, we use molecular simulation to calculate the total transport resistance by dividing it into two contributions: the interior part and the interfacial part. The interior resistance is dependent on the thickness of the PA layer, while the interfacial resistance is not. Simulation based on the 5 nm PA layer reveals that interfacial resistance is the dominating contribution (> 62%) to the total resistance. However, for real-world RO membranes with a 200 nm PA layer, interfacial resistance plays a minor role, with a contribution below 10%. This implies that there is a risk of inaccuracy when using the typical method to estimate the transport resistance of RO membranes, as this method involves simply multiplying the total transport resistance of the simulated value based on a membrane with a 5 nm PA layer. Furthermore, both the interfacial resistance and the interior resistance are dependent on the chemistry of the PA layer. Our simulation reveals that decreasing the number of residual carboxyl groups in the PA layer leads to decreased interior resistance; therefore, the water permeability can be improved at no cost of ion rejection, which is in excellent agreement with the experimental results.  相似文献   

8.
The uniform and completed nanofilms of nickel oxide (NiO) were electrodeposited on the carbon fibers (CFs) by a facile method of cyclic voltammetric. The as-prepared NiO/CFs composites can be used as a flexible electrode for electrochemical supercapacitors. Electrochemical measurements showed that 1.0-NiO/CFs had a good redox process and reversibility, and displayed the specific capacitances as high as 929 F g?1 at a current density of 1 A g?1. After 5000 cycles of charge and discharge, the 1.0-NiO/CFs composite materials could retain more than 88% of initial capacitance and show an excellent cyclability. Meanwhile, this supercapacitor exhibited a higher energy density of 20.8 Wh kg?1 at a power density of 200 W kg?1. The carbon fibers acting as active substrate for the composite electrode are a good conductor and have a larger capacitance of electrical double layer. The nanofilm structure of NiO could facilitate the contact of the electrolyte with the active materials, thus increasing the Faradaic pseudo-capacitance.  相似文献   

9.
Surfaces that resist nonspecific protein adsorption in a complex biological milieu are required for a variety of applications. However, few strategies can achieve a robust antifouling coating on a surface in an easy and reliable way, regardless of material type, morphology, and shape. Herein, the preparation of an antifouling coating by one-step aqueous supramolecular assembly of bovine serum albumin (BSA) is reported. Based on fast amyloid-like protein aggregation through the rapid reduction of the intramolecular disulfide bonds of BSA by tris(2-carboxyethyl)phosphine, a dense proteinaceous nanofilm with controllable thickness (≈130 nm) can be covered on virtually arbitrary material surfaces in tens of minutes by a simple dipping or spraying. The nanofilm shows strong stability and adhesion with the underlying substrate, exhibiting excellent resistance to the nonspecific adsorption of a broad-spectrum of contaminants including proteins, serum, cell lysate, cells, and microbes, etc. In vitro and in vivo experiments show that the nanofilm can prevent the adhesion of microorganisms and the formation of biofilm. Compared with native BSA, the proteinaceous nanofilm coating exposes a variety of functional groups on the surface, which have more-stable adhesion with the surface and can maintain the antifouling in harsh conditions including under ultrasound, surfactants, organic solvents, and enzymatic digestion.  相似文献   

10.
A new hole transporting material (HTM) named DMZ is synthesized and employed as a dopant‐free HTM in inverted planar perovskite solar cells (PSCs). Systematic studies demonstrate that the thickness of the hole transporting layer can effectively enhance the morphology and crystallinity of the perovskite layer, leading to low series resistance and less defects in the crystal. As a result, the champion power conversion efficiency (PCE) of 18.61% with JSC = 22.62 mA cm?2, VOC = 1.02 V, and FF = 81.05% (an average one is 17.62%) is achieved with a thickness of ≈13 nm of DMZ (2 mg mL?1) under standard global AM 1.5 illumination, which is ≈1.5 times higher than that of devices based on poly(3,4‐ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT:PSS). More importantly, the devices based on DMZ exhibit a much better stability (90% of maximum PCE retained after more than 556 h in air (relative humidity ≈ 45%–50%) without any encapsulation) than that of devices based on PEDOT:PSS (only 36% of initial PCE retained after 77 h in same conditions). Therefore, the cost‐effective and facile material named DMZ offers an appealing alternative to PEDOT:PSS or polytriarylamine for highly efficient and stable inverted planar PSCs.  相似文献   

11.
Aqueous Zn‐MnO2 batteries using mild electrolyte show great potential in large‐scale energy storage (LSES) application, due to high safety and low cost. However, structure collapse of manganese oxides upon cycling caused by the conversion mechanism (e.g., from tunnel to layer structures for α‐, β‐, and γ‐phases) is one of the most urgent issues plaguing its practical applications. Herein, to avoid the phase conversion issue and enhance battery performance, a structurally robust novel phase of manganese oxide MnO2H0.16(H2O)0.27 (MON) nanosheet with thickness of ≈2.5 nm is designed and synthesized as a promising cathode material, in which a nanosheet structure combined with a novel H+/Zn2+ synergistic intercalation mechanism is demonstrated and evidenced. Accordingly, a high‐performance Zn/MON cell is achieved, showing a high energy density of ≈228.5 Wh kg?1, impressive cyclability with capacity retention of 96% at 0.5 C after 300 cycles, as well as exhibiting rate performance of 115.1 mAh g?1 at current rate of 10 C. To the best current knowledge, this H+/Zn2+ synergistic intercalation mechanism is first reported in an aqueous battery system, which opens a new opportunity for development of high‐performance aqueous Zn ion batteries for LSES.  相似文献   

12.
Graphene oxide(GO) membranes play an important role in various nanofiltration applications including desalination, water purification, gas separation, and pervaporation. However, it is still very challenging to achieve both high separation efficiency and good water permeance at the same time. Here, we synthesized two kinds of GO-based composite membranes i.e. reduced GO(rGO)@MoO_2 and rGO@WO_3 by in-situ growth of metal nanoparticles on the surface of GO sheets. They show a high separation efficiency of ~100% for various organic dyes such as rhodamine B, methylene blue and evans blue, along with a water permeance over 125 Lm~(-2) h~(-1) bar~(-1). The high water permeance and rejection efficiency open up the possibility for the real applications of our GO composite membranes in water purification and wastewater treatment. Furthermore, this composite strategy can be readily extended to the fabrication of other ultrathin molecular sieving membranes for a wide range of molecular separation applications.  相似文献   

13.
Large size of capacitors is the main hurdle in miniaturization of current electronic devices. Herein, a scalable solution‐based layer‐by‐layer engineering of metallic and high‐κ dielectric nanosheets into multilayer nanosheet capacitors (MNCs) with overall thickness of ≈20 nm is presented. The MNCs are built through neat tiling of 2D metallic Ru0.95O20.2? and high‐κ dielectric Ca2NaNb4O13? nanosheets via the Langmuir–Blodgett (LB) approach at room temperature which is verified by cross‐sectional high‐resolution transmission electron microscopy (HRTEM). The resultant MNCs demonstrate a high capacitance of 40–52 µF cm?2 and low leakage currents down to 10?5–10?6 A cm?2. Such MNCs also possess complimentary in situ robust dielectric properties under high‐temperature measurements up to 250 °C. Based on capacitance normalized by the thickness, the developed MNC outperforms state‐of‐the‐art multilayer ceramic capacitors (MLCC, ≈22 µF cm?2/5 × 104 nm) present in the market. The strategy is effective due to the advantages of facile, economical, and ambient temperature solution assembly.  相似文献   

14.
Gallium arsenide (GaAs) provides a suitable bandgap (1.43 eV) for solar spectrum absorption and allows a larger photovoltage compared to silicon, suggesting great potential as a photoanode toward water splitting. Photocorrosion under water oxidation condition, however, leads to decomposition or the formation of an insulating oxide layer, which limits the photoelectrochemical performance and stability of GaAs. In this work, a self‐limiting electrodeposition method of Ni on GaAs is reported to either generate ultra‐thin continuous film or nanoislands with high particle density by controlling deposition time. The self‐limiting growth mechanism is validated by potential transients, X‐ray photoelectron spectroscopy composition and depth profile measurements. This deposition method exhibits a rapid nucleation, forms an initial metallic layer followed by a hydroxide/oxyhydroxide nanofilm on the GaAs surface and is independent of layer thickness versus deposition time when coalescence is reached. A photocurrent up to 8.9 mA cm?2 with a photovoltage of 0.11 V is obtained for continuous ultrathin films, while a photocurrent density of 9.2 mA cm?2 with a photovoltage of 0.50 V is reached for the discontinuous nanoislands layers in an aqueous solution containing the reversible redox couple K3Fe(CN)6/K4Fe(CN)6.  相似文献   

15.
Redox‐active organic materials have been considered as one of the most promising “green” candidates for aqueous redox flow batteries (RFBs) due to the natural abundance, structural diversity, and high tailorability. However, many reported organic molecules are employed in the anode, and molecules with highly reversible capacity for the cathode are limited. Here, a class of heteroaromatic phenothiazine derivatives is reported as promising positive materials for aqueous RFBs. Among these derivatives, methylene blue (MB) possesses high reversibility with extremely fast redox kinetics (electron‐transfer rate constant of 0.32 cm s?1), excellent stability in both neutral and reduced states, and high solubility in an acetic‐acid–water solvent, leading to a high reversible capacity of ≈71 Ah L?1. Symmetric RFBs based on MB electrolyte demonstrate remarkable stability with no capacity decay over 1200 cycles. Even concentrated MB catholyte (1.5 m ) is still able to deliver stable capacity over hundreds of cycles in a full cell system. The impressive cell performance validates the practicability of MB for large‐scale electrical energy storage.  相似文献   

16.
Hydrophobic/super-hydrophobic nanofilms with improved corrosion resistance were fabricated on the surfaces of Mg-Mn-Ce magnesium alloy by a surface modification technique, named as polymer plating, which has been developed to modify superficial characteristics of magnesium alloys with polymeric nanofilms through synthesized organic compounds of triazine dithiol containing functional groups. The nanofilms were prepared by the electrochemical and polymerization reactions during polymer plating analyzed from characteristics of Fourier transform infrared spectrophotometer, X-ray photoelectron spectroscopy and scanning electron microscopy. The fabricated nanofilms changed the surface wettability of blank magnesium alloy from hydrophilic to hydrophobic with contact angle 119.0° of distilled water with lower surface free energy of 20.59 mJ/m2 and even super-hydrophobic with contact angle 158.3° with lowest surface free energy of 4.68 mJ/m2 by different functional nanofilms on their surfaces. Alteration of wettability from hydrophilic to hydrophobic and super-hydrophobic resulted from their low surface free energy and surface morphology with micro- and nano-rough structures. The corrosion behaviors from potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that the super-hydrophobic nanofilm has higher corrosion resistance and stability in 0.1 mol/L NaCl solution and lower corrosion current density (Icorr) with Rct increasing two orders of magnitude of 16,500 Ω·cm2 compared to that obtained for blank of 485 Ω·cm2.  相似文献   

17.
Alkaline water electrolysis (AWE) is considered a promising technology for green hydrogen (H2) production. Conventional diaphragm-type porous membranes have a high risk of explosion owing to their high gas crossover, while nonporous anion exchange membranes lack mechanical and thermochemical stability, limiting their practical application. Herein, a thin film composite (TFC) membrane is proposed as a new category of AWE membranes. The TFC membrane consists of an ultrathin quaternary ammonium (QA) selective layer formed via Menshutkin reaction-based interfacial polymerization on a porous polyethylene (PE) support. The dense, alkaline-stable, and highly anion-conductive QA layer prevents gas crossover while promoting anion transport. The PE support reinforces the mechanical and thermochemical properties, while its highly porous and thin structure reduces mass transport resistance across the TFC membrane. Consequently, the TFC membrane exhibits unprecedentedly high AWE performance (1.16 A cm−2 at 1.8 V) using nonprecious group metal electrodes with a potassium hydroxide (25 wt%) aqueous solution at 80 °C, significantly outperforming commercial and other lab-made AWE membranes. Moreover, the TFC membrane demonstrates remarkably low gas crossover, long-term stability, and stack cell operability, thereby ensuring its commercial viability for green H2 production. This strategy provides an advanced material platform for energy and environmental applications.  相似文献   

18.
In recent decades, tissue engineering techniques have attracted much attention in the construction of 3D tissues or organs. However, even though precise control of cell locations in 3D has been achieved, the organized cell locations are easily destroyed because of the cell migration during the cell culture period. In human body, basement membranes (BMs) maintain the precise cell locations in 3D (compartmentalization). Constructing artificial BMs that mimic the structure and biofunctions of natural BMs remains a major challenge. Here, a nanometer‐sized artificial BM through layer‐by‐layer assembly of collagen type IV (Col‐IV) and laminin (LM), chosen because they are the main components of natural BMs, is reported. This multilayered Col‐IV/LM nanofilm imitates natural BM structure closely, showing controllable and similar components, thickness, and fibrous network. The Col‐IV/LM nanofilms have high cell adhesion properties and maintain the spreading morphology effectively. Furthermore, the barrier effect of preventing cell migration but permitting effective cell–cell crosstalk between fibroblasts and endothelial cells demonstrates the ability of Col‐IV/LM nanofilms for cell compartmentalization in 3D tissues, providing more reliable tissue models for evaluating drug efficacy, nanotoxicology, and implantation.  相似文献   

19.
Microscale implantable fluorescent sensors that can be transdermally interrogated using light are being pursued as a minimally invasive biochemical monitoring technology for in vivo applications. Previously, we reported the development of an enzymatic-based sensing platform characterized using glucose as a model biochemical analyte for minimally invasive diabetic monitoring. In this work, surface-adsorbed polyelectrolyte nanofilms were employed to modulate the relative fluxes of glucose and oxygen into the sensor, allowing response characteristics, namely, analytical range and sensitivity, to be tuned. Modulation of substrate transport properties were obtained by varying surface-adsorbed nanofilm thicknesses, ionic strength of assembly conditions, and outermost constituents. In general, increasing film thickness through additional cycles of adsorption resulted in consistently decreased glucose flux, correspondingly decreasing sensitivity and increasing range. While the two components of the nanofilms remained the same [poly(allylamine hydrochloride), PAH; poly(sodium 4-styrenesulfonate)}, the assembly conditions and terminal layer were found to strongly influence sensor behavior. Specifically, without added salt in assembly conditions, glucose diffusion was significantly decreased when films were capped with PAH, resulting in reduced sensitivity and extended range of response. With added salt, however, sensor response was the same for films of the same thickness but different terminal materials. These findings demonstrate that sensor response may be customized to cover the hypo- (0-80 mg/dL), normo- (80-120 mg/dL), and hyperglycemic levels (>120 mg/dL) from a single batch of particles through appropriate selection of coating structure and assembly conditions. Furthermore, the results indicate nanofilms of only 12-nm thickness could significantly affect response behavior, confirming predicted behavior by models of sensor reaction-diffusion kinetics. These findings demonstrate the ability to engineer sensor response properties using a simple, cost-effective means and lay the groundwork for developing additional highly sensitive biochemical monitors.  相似文献   

20.
Organic field‐effect transistors and near‐infrared (NIR) organic phototransistors (OPTs) have attracted world's attention in many fields in the past decades. In general, the sensitivity, distinguishing the signal from noise, is the key parameter to evaluate the performance of NIR OPTs, which is decided by responsivity and dark current. 2D single crystal films of organic semiconductors (2DCOS) are promising functional materials due to their long‐range order in spite of only few molecular layers. Herein, for the first time, air‐stable 2DCOS of n‐type organic semiconductors (a furan‐thiophene quinoidal compound, TFT‐CN) with strong absorbance around 830 nm, by the facile drop‐casting method on the surface of water are successfully prepared. Almost millimeter‐sized TFT‐CN 2DCOS are obtained and their thickness is below 5 nm. A competitive field‐effect electron mobility (1.36 cm2 V?1 s?1) and high on/off ratio (up to 108) are obtained in air. Impressively, the ultrasensitive NIR phototransistors operating at the off‐state exhibit a very low dark current of ≈0.3 pA and an ultrahigh detectivity (D*) exceeding 6 × 1014 Jones because the devices can operate in full depletion at the off‐state, superior to the majority of the reported organic‐based NIR phototransistors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号