首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural biomolecules have potential as proton‐conducting materials, in which the hydrogen‐bond networks can facilitate proton transportation. Herein, a biomolecule/metal–organic framework (MOF) approach to develop hybrid proton‐conductive membranes is reported. Single‐strand DNA molecules are introduced into DNA@ZIF‐8 membranes through a solid‐confined conversion process. The DNA‐threaded ZIF‐8 membrane exhibits high proton conductivity of 3.40 × 10?4 S cm?1 at 25 °C and the highest one ever reported of 0.17 S cm?1 at 75 °C, under 97% relatively humidity, attributed to the formed hydrogen‐bond networks between the DNA molecules and the water molecules inside the cavities of the ZIF‐8, but very low methanol permeability of 1.25 × 10?8 cm2 s?1 due to the small pore entrance of the DNA@ZIF‐8 membranes. The selectivity of the DNA@ZIF‐8 membrane is thus significantly higher than that of developed proton‐exchange membranes for fuel cells. After assembling the DNA@ZIF‐8 hybrid membrane into direct methanol fuel cells, it exhibits a power density of 9.87 mW cm?2 . This is the first MOF‐based proton‐conductivity membrane used for direct methanol fuel cells, providing bright promise for such hybrid membranes in this application.  相似文献   

2.
All‐solid‐state Li–S batteries are promising candidates for next‐generation energy‐storage systems considering their high energy density and high safety. However, their development is hindered by the sluggish electrochemical kinetics and low S utilization due to high interfacial resistance and the electronic insulating nature of S. Herein, Se is introduced into S cathodes by forming SeSx solid solutions to modify the electronic and ionic conductivities and ultimately enhance cathode utilization in all‐solid‐state lithium batteries (ASSLBs). Theoretical calculations confirm the redistribution of electron densities after introducing Se. The interfacial ionic conductivities of all achieved SeSx–Li3PS4 (x = 3, 2, 1, and 0.33) composites are 10?6 S cm?1. Stable and highly reversible SeSx cathodes for sulfide‐based ASSLBs can be developed. Surprisingly, the SeS2/Li10GeP2S12–Li3PS4/Li solid‐state cells exhibit excellent performance and deliver a high capacity over 1100 mAh g?1 (98.5% of its theoretical capacity) at 50 mA g?1 and remained highly stable for 100 cycles. Moreover, high loading cells can achieve high areal capacities up to 12.6 mAh cm?2. This research deepens the understanding of Se–S solid solution chemistry in ASSLB systems and offers a new strategy to achieve high‐performance S‐based cathodes for application in ASSLBs.  相似文献   

3.
Poor deep tumor penetration and incomplete intracellular drug release remain challenges for antitumor nanomedicine application in clinical settings. Herein, a nanomedicine (RLPA‐NPs) is developed that can achieve prolonged blood circulation, deep tumor penetration, active‐targeting of cancer cells, endosome/lysosome escape, and intracellular selectivity self‐amplified drug release for effective drug delivery. The RLPA‐NPs are constructed by encapsulation of a pH‐sensitive polymer octadecylamine‐poly(aspartate‐1‐(3‐aminopropyl) imidazole) (OA‐P(Asp‐API)) and a ROS‐generation agent, β‐Lapachone (Lap), in micelles assembled by the tumor‐penetration peptide internalizing RGD (iRGD)‐modified ROS‐responsive paclitaxel (PTX)‐prodrug. iRGD could promote RLPA‐NPs penetration into deep tumor tissue, and specific targeting to cancer cells. After internalization by cancer cells through receptor‐mediated endocytosis, OA‐P(Asp‐API) can rapidly protonate in the endosome's acidic environment, resulting in RLPA‐NPs escape from the endosome through the “proton sponge effect”. At the same time, the RLPA‐NPs micelle disassembles, releasing Lap and PTX‐prodrug. Subsequently, the released Lap could generate ROS, consequently amplifying and accelerating PTX release to kill tumor cells. The in vitro and in vivo studies demonstrated that RLPA‐NPs can significantly improve the therapeutic effect compared to control groups. Therefore, RLPA‐NPs are a promising nanoplatform for overcoming multiple physiological and pathological barriers to enhance drug delivery.  相似文献   

4.
Future healthcare requires development of novel theranostic agents that are capable of not only enhancing diagnosis and monitoring therapeutic responses but also augmenting therapeutic outcomes. Here, a versatile and stable nanoagent is reported based on poly(ethylene glycol)‐b‐poly(l ‐thyroxine) (PEG‐PThy) block copolypeptide for enhanced single photon emission computed tomography/computed tomography (SPECT/CT) dual‐modality imaging and targeted tumor radiotherapy in vivo. PEG‐PThy acquired by polymerization of l ‐thyroxine‐N‐carboxyanhydride (Thy‐NCA) displays a controlled Mn, high iodine content of ≈49.2 wt%, and can spontaneously form 65 nm‐sized nanoparticles (PThyN). In contrast to clinically used contrast agents like iohexol and iodixanol, PThyN reveals iso‐osmolality, low viscosity, and long circulation time. While PThyN exhibits comparable in vitro CT attenuation efficacy to iohexol, it greatly enhances in vivo CT imaging of vascular systems and soft tissues. PThyN allows for surface decoration with the cRGD peptide achieving enhanced CT imaging of subcutaneous B16F10 melanoma and orthotopic A549 lung tumor. Taking advantages of a facile iodine exchange reaction, 125I‐labeled PThyN enables SPECT/CT imaging of tumors and monitoring of PThyN biodistribution in vivo. Besides, 131I‐labeled and cRGD‐functionalized PThyN displays remarkable growth inhibition of the B16F10 tumor in mice (tumor inhibition rate > 89%). These poly(l ‐thyroxine) nanoparticles provide a unique and versatile theranostic platform for varying diseases.  相似文献   

5.
Microenvironment‐responsive supramolecular assemblies have attracted great interest in the biomedical field due to their potential applications in controlled drug release. In this study, oxidation‐responsive supramolecular polycationic assemblies named CPAs are prepared for nucleic acid delivery via the host–guest interaction of β‐cyclodextrin based polycations and a ferrocene‐functionalized zinc tetraaminophthalocyanine core. The reactive oxygen species (ROS) can accelerate the disassembly of CPA/pDNA complexes, which would facilitate the release of pDNA in the complexes and further benefit the subsequent transfection. Such improvement in transfection efficiency is proved in A549 cells with high H2O2 concentration. Interestingly, the transfection efficiencies mediated by CPAs are also different in the presence or absence of light in various cell lines such as HEK 293 and 4T1. The single oxygen (1O2), produced by photosensitizers in the core of CPAs under light, increases the ROS amount and accelerates the disassembly of CPAs/pDNA complexes. In vitro and in vivo studies further illustrate that suppressor tumor gene p53 delivered by CPAs exhibits great antitumor effects under illumination. This work provides a promising strategy for the design and fabrication of oxidation‐responsive nanoassemblies with light‐enhanced gene transfection performance.  相似文献   

6.
Solid electrolytes are one of the most promising electrolyte systems for safe lithium batteries, but the low ionic conductivity of these electrolytes seriously hinders the development of efficient lithium batteries. Here, a novel class of graphene‐analogues boron nitride (g‐BN) nanosheets confining an ultrahigh concentration of ionic liquids (ILs) in an interlayer and out‐of‐layer chamber to give rise to a quasi‐liquid solid electrolyte (QLSE) is reported. The electron‐insulated g‐BN nanosheet host with a large specific surface area can confine ILs as much as 10 times of the host's weight to afford high ionic conductivity (3.85 × 10?3 S cm?1 at 25 °C, even 2.32 × 10?4 S cm?1 at ?20 °C), which is close to that of the corresponding bulk IL electrolytes. The high ionic conductivity of QLSE is attributed to the enormous absorption for ILs and the confining effect of g‐BN to form the ordered lithium ion transport channels in an interlayer and out‐of‐layer of g‐BN. Furthermore, the electrolyte displays outstanding electrochemical properties and battery performance. In principle, this work enables a wider tunability, further opening up a new field for the fabrication of the next‐generation QLSE based on layered nanomaterials in energy conversion devices.  相似文献   

7.
Molecularly engineered novel dopant‐free hole‐transporting materials for perovskite solar cells (PSCs) combined with mixed‐perovskite (FAPbI3)0.85(MAPbBr3)0.15 (MA: CH3NH3+, FA: NH=CHNH3+) that exhibit an excellent power conversion efficiency of 18.9% under AM 1.5 conditions are investigated. The mobilities of FA‐CN, and TPA‐CN are determined to be 1.2 × 10?4 cm2 V?1 s?1 and 1.1 × 10?4 cm2 V?1 s?1, respectively. Exceptional stability up to 500 h is measured with the PSC based on FA‐CN. Additionally, it is found that the maximum power output collected after 1300 h remained 65% of its initial value. This opens up new avenue for efficient and stable PSCs exploring new materials as alternatives to Spiro‐OMeTAD.  相似文献   

8.
Engineering functional nanomaterials with high therapeutic efficacy and minimum side effects has increasingly become a promising strategy for cancer treatment. Herein, a reactive oxygen species (ROS) enhanced combination chemotherapy platform is designed via a biocompatible metal‐polyphenol networks self‐assembly process by encapsulating doxorubicin (DOX) and platinum prodrugs in nanoparticles. Both DOX and platinum drugs can activate nicotinamide adenine dinucleotide phosphate oxidases, generating superoxide radicals (O2??). The superoxide dismutase‐like activity of polyphenols can catalyze H2O2 generation from O2??. Finally, the highly toxic HO? free radicals are generated by a Fenton reaction. The ROS HO? can synergize the chemotherapy by a cascade of bioreactions. Positron emission tomography imaging of 89Zr‐labeled as‐prepared DOX@Pt prodrug Fe3+ nanoparticles (DPPF NPs) shows prolonged blood circulation and high tumor accumulation. Furthermore, the DPPF NPs can effectively inhibit tumor growth and reduce the side effects of anticancer drugs. This study establishes a novel ROS promoted synergistic nanomedicine platform for cancer therapy.  相似文献   

9.
To stress the role of deoxyribonucleic acid (DNA) as a drug carrier, an efficient conjugation strategy in which chemotherapeutics can be grafted onto a phosphorothiolated DNA backbone through the reaction between the phosphorothioate group (PS) and a benzyl bromide group is proposed. As a proof of concept, benzyl‐bromide‐modified paclitaxel (PTX) is employed to graft onto the DNA backbone at the PS modification sites. Due to the easy preparation of phosphorothiolated DNA at any desired position during its solid‐phase synthesis, diblock DNA strands containing both normal phosphodiester segment (PODNA) and phosphorothiolate segment (PSDNA) are directly grafted with a multitude of PTXs without using complicated and exogenous linkers. Then, the resulting amphiphilic PODNA‐blocked‐(PSDNA‐grafted PTX) conjugates (PODNA‐b‐(PSDNA‐g‐PTX)) assemble into PTX‐loaded spherical nucleic acid (SNA)‐like micellar nanoparticles (PTX‐SNAs) with a high drug loading ratio up to ≈53%. Importantly, the PODNA segment maintains its molecular recognition property and biological functions, which allows the as‐prepared PTX‐SNAs to be further functionalized with tumor‐targeting aptamers, fluorescent probe strands, or antisense sequences. These multifunctional PTX‐SNAs demonstrate active tumor‐targeting delivery, efficient inhibition of tumor growth, and the reversal of drug resistance both in vitro and in vivo for comprehensive antitumor therapy.  相似文献   

10.
A high‐sensitivity and low‐power theranostic nanosystem that combines with synergistic photothermal therapy and surface‐enhanced Raman scattering (SERS) mapping is constructed by mesoporous silica self‐assembly on the reduced graphene oxide (rGO) nanosheets with nanogap‐aligned gold nanoparticles (AuNPs) encapsulated and arranged inside the nanochannels of the mesoporous silica layer. Rhodamine 6G (R6G) as a Raman reporter is then encapsulated into the nanochannels and anti‐epidermal growth factor receptor (EGFR) is conjugated on the nanocomposite surface, defined as anti‐EGFR‐PEG‐rGO@CPSS‐Au‐R6G, where PEG is polyethylene glycol and CPSS is carbon porous silica nanosheets. SERS spectra results show that rGO@CPSS‐Au‐R6G enhances 5 × 106 magnification of the Raman signals and thus can be applied in the noninvasive cell tracking. Furthermore, it displays high sensitivity (detection limits: 10?8m R6G solution) due to the “hot spots” effects by the arrangements of AuNPs in the nanochannels of mesoporous silica. The highly selective targeting of overexpressing EGFR lung cancer cells (A549) is observed in the anti‐EGFR‐PEG‐rGO@CPSS‐Au‐R6G, in contrast to normal cells (MRC‐5). High photothermal therapy efficiency with a low power density (0.5 W cm?2) of near‐infrared laser can be achieved because of the synergistic effect by conjugated AuNPs and rGO nanosheets. These results demonstrate that the anti‐EGFR‐PEG‐rGO@CPSS‐Au‐R6G is an excellent new theranostic nanosystem with cell targeting, cell tracking, and photothermal therapy capabilities.  相似文献   

11.
Narrow bandgap n‐type organic semiconductors (n‐OS) have attracted great attention in recent years as acceptors in organic solar cells (OSCs), due to their easily tuned absorption and electronic energy levels in comparison with fullerene acceptors. Herein, a new n‐OS acceptor, Y5, with an electron‐deficient‐core‐based fused structure is designed and synthesized, which exhibits a strong absorption in the 600–900 nm region with an extinction coefficient of 1.24 × 105 cm?1, and an electron mobility of 2.11 × 10?4 cm2 V?1 s?1. By blending Y5 with three types of common medium‐bandgap polymers (J61, PBDB‐T, and TTFQx‐T1) as donors, all devices exhibit high short‐circuit current densities over 20 mA cm?2. As a result, the power conversion efficiency of the Y5‐based OSCs with J61, TTFQx‐T1, and PBDB‐T reaches 11.0%, 13.1%, and 14.1%, respectively. This indicates that Y5 is a universal and highly efficient n‐OS acceptor for applications in organic solar cells.  相似文献   

12.
Cerenkov radiation (CR) from radionuclides can act as a built‐in light source for cancer theranostics, opening a new horizon in biomedical applications. However, considerably low tumor‐targeting efficiency of existing radionuclides and radionuclide‐based nanomedicines limits the efficacy of CR‐induced theranostics (CRIT). It remains a challenge to precisely and efficiently supply CR energy to the tumor site. Here, a “missile‐detonation” strategy is reported, in which a high dose of p‐SCN‐Bn‐deferoxamine‐porphyrin‐PEG nanocomplex (Df‐PPN) is first adminstered as a CR energy receiver/missile to passively target to tumor, and then a low dose of the 89Zr‐labeled Df‐PPN is administrated as a CR energy donor/detonator, which can be visualized and quantified by Cerenkov energy transfer imaging, positron‐emission tomography, and fluorescence imaging. Based on homologous properties, the colocalization of Df‐PPN and 89Zr‐Df‐PPN in the tumor site is maximized and efficient CR energy transfer is enabled, which maximizes the tumor‐targeted CRIT efficacy in an optimal spatiotemporal setting while also reducing adverse off‐target effects from CRIT. This precise and efficient CRIT strategy causes significant tumor vascular damage and inhibited tumor growth.  相似文献   

13.
This work aims at developing an immunotherapeutic strategy to deliver a cancer DNA vaccine targeting dendritic cells (DCs), to trigger their maturation and antitumor function, and reduce immune escape using a polymeric nanocomplex of paclitaxel (PTX)‐encapsulated sulfobutylether‐β‐cyclodextrin (SBE)/mannosylated N,N,N‐trimethylchitosan (mTMC)/DNA. To enhance DC‐targeting and revoke immunosuppression is the major challenge for eliciting effective antitumor immunity. This codelivery system is characterized by using low‐dose PTX as an adjuvant that is included inside SBE, and the PTX/SBE further serves as an anionic crosslinker to self‐assemble with the cationic mTMC/DNA polyplexes. This system is used in combination with a microneedle for transcutaneous vaccination. Once penetrating into the epidermis, the mannosylated nanocomplexes would preferentially deliver the pTRP‐2 DNA vaccine inside the DCs. Phenotypic maturation is demonstrated by the increased expression of costimulatory molecules of CD80 and CD86, and the elevated secretion of IL‐12p70. The mixed leucocyte reactions reveal that the PTX/SBE‐mTMC/DNA nanocomplexes enhance the proliferation of CD4+ and CD8+ T cells, and inhibit the generation of immune‐suppressive FoxP3+ T cells. The system shows high antitumor efficacy in vivo. The PTX/SBE‐mTMC/DNA nanocomplexes for DC‐targeted codelivery of DNA vaccine and adjuvant PTX yield synergistic effects on the DC maturation and its presenting functions, thus increasing immune stimulation and reducing immune escape.  相似文献   

14.
Abstract

As a major cause for the inefficiency of cancer chemotherapy, multidrug resistance (MDR) has become a major barrier to cancer treatment. Mitochondrion-orientated transportation of smart liposomes has been developed as a promising strategy to deliver anticancer drugs directly to tumor sites and actively target the mitochondria, so that drugs can interfere with mitochondrial function and facilitate cell apoptosis, overcoming MDR. Herein, we report a novel dual-functional paclitaxel (PTX) liposome system possessing both CD44-targeting and mitochondrial-targeting properties to enhance drug accumulation in mitochondria and trigger apoptosis of drug-resistant cancer cells. Mitochondria-targeting PTX-loaded liposomes were prepared by thin-film hydration and then coated with hyaluronic acid (HA) by electrostatic adsorption. We evaluated the characteristics of the PTX liposomes in vitro, and found that their particle size was about 100?nm and increased to ~140?nm after modification by HA. The entrapment efficiency was larger than 85%, and stability data indicated that the liposomes were physically and chemically stable for at least one week at 4?°C. We further evaluated the intake, mitochondrial targeting, ATP levels, caspase-3 activity measurement, and antitumor actives of the liposomes. The results indicated that HA-coated liposomes with mitochondria targeting had significant inhibitory effects against A549 and A549/Taxol cells, showing them to be a promising means of improving therapeutic efficacy and overcoming MDR in cancer treatment.  相似文献   

15.
The incidence of triple‐negative breast cancer (TNBC) is difficult to predict, and TNBC has a high mortality rate among women worldwide. In this study, a theranostics approach is developed for TNBC with ratiometric photoacoustic monitored thiol‐initiated hydrogen sulfide (H2S) therapy. The ratiometric photoacoustic (PA) probe (CY) with a thiol‐initiated H2S donor (PSD) to form a nanosystem (CY‐PSD nanoparticles) is integrated. In this theranostics approach, H2S generated from PSD is sensed by CY based on ratiometric PA signals, which simultaneously pinpoints the tumor region. Additionally, H2S is cytotoxic toward TNBC cells (MDA‐MB 231), showing a tumor inhibition rate of 63%. To further verify its pharmacological mechanism, proteomics analysis is performed on tumors treated with CY‐PSD nanoparticles. Cells are killed by the significant mitochondrial dysfunction via supressed energy supply and apoptosis initiation. Besides, the observed inhibition of oxidative stress also generates the cytotoxicity. Significant Kyoto Encyclopedia of Genes Genomes pathways related to TNBC are found to be inhibited. This H2S theranostics approach updates the current anticancer therapies which brings promise for women suffering malignant breast cancer.  相似文献   

16.
Reactive oxygen species (ROS) generated during photodynamic therapy (PDT) can trigger autophagy. However, little research is focused on whether there is a synergistic anticancer effect with PDT if extra autophagy promoter or inhibitor is added. Here, it is found that autophagy promotion significantly enhances the PDT activity to cancer cells. Based on this preliminary result, a ROS‐sensitive self‐assembled dendrimer nanoparticle is exploited as a carrier to codeliver an autophagy promoter (rapamycin, Rapa) and photosensitizer (phthalocyanine, Pc) to the tumor. After entrapped by cancer cells and irradiated by light, the ROS generated in PDT process of Pc can trigger nanoparticle destruction to release Rapa, thus initiating the autophagy process and remarkably enhancing the efficacy of PDT, leading to efficient tumor suppression.  相似文献   

17.
Singlet oxygen (1O2), as an important kind of reactive oxygen species (ROS) and main therapeutic agent in photodynamic therapy (PDT), only have a half‐life of 40 ns and an effective radius of 20 nm, which cause significant obstacles for improving PDT efficacy. In this work, novel upconversion nanoparticle (UCN)‐based nanoplatforms are developed with a minimized distance between UCNs and a photosensitizer, protoporphyrin IX (PpIX), and a controllable payload of PpIX, to enhance and control ROS production. The ability of the nanoplatform to target different subcellular organelles such as cell membrane and mitochondria is demonstrated via surface modification of the nanoplatform with different targeting ligands. The results show that the mitochondria‐targeting nanoplatforms result in significantly increased capability of both tumor cell killing and inhibition of tumor growth. Subcellular targeting of nanoparticles leads to the death of cancer cells in different manners. However, the efficiency of ROS generation almost have no influence on the tumor cell viability during the period of evaluation. These findings suggest that specific subcellular targeting of the nanoplatforms enhances the PDT efficacy more effectively than the increase of ROS production, and may shed light on future novel designs of effective and controllable PDT nanoplatforms.  相似文献   

18.
Multiple structural phases in transition metal dichalcogenides have attracted considerable recent interest for their tunable chemical and electronic properties. Herein, a chemical vapor deposition route to ultrathin CoSe nanoplates with tunable structure phases is reported. By precisely tailoring the growth temperature, ultrathin 2D layered tetragonal CoSe nanoplates and nonlayered hexagonal CoSe nanoplates can be selectively prepared as square or hexagonal geometries, with thickness as thin as 2.3 and 3.7 nm, respectively. X‐ray diffraction, transmission electron microscopy, and selected area electron diffraction studies show that both types of nanoplates are high‐quality single crystals. Electrical transport studies reveal that both the tetragonal and hexagonal CoSe nanoplates show strong thickness‐tunable electrical properties and excellent breakdown current density. The 2D hexagonal CoSe nanoplates display metallic behavior with an excellent conductivity up to 6.6 × 105 S m?1 and an extraordinary breakdown current density up to 3.9 × 107 A cm?2, while the square tetragonal nanoplates show considerably lower conductivity up to 8.2 × 104 S m?1 with angle‐dependent magnetoresistance and weak antilocalization effect at lower field. This study offers a tunable material system for exploring multiphase 2D materials and their potential applications for electronic and magnetoelectronic devices.  相似文献   

19.
In the present work, a hierarchical composite of rose‐like VS2@S/N‐doped carbon (VS2@SNC) with expanded (001) planes is successfully fabricated through a facile synthetic route. Notably, the d‐spacing of (001) planes is expanded to 0.92 nm, which is proved to dramatically reduce the energy barrier for Li+ diffusion in the composite of VS2@SNC by density functional theory calculation. On the other hand, the S/N‐doped carbon in the composite greatly promotes the electrical conductivity and enhances the structural stability. In addition, the hierarchical structure of VS2@SNC facilitates rapid electrolyte diffusion and increases the contact area between the electrode and electrolyte simultaneously. Benefiting from the merits mentioned above, the VS2@SNC electrode exhibits excellent electrochemical properties, such as a large reversible capacity of 971.6 mA h g?1 at 0.2 A g?1, an extremely high rate capability of 772.1 mA h g?1 at 10 A g?1, and a remarkable cycling stability up to 600 cycles at 8 A g?1 with a capacity of 684.5 mA h g?1, making it a promising candidate as an anode material for lithium‐ion batteries.  相似文献   

20.
Noncovalent conformational locks are broadly employed to construct highly planar π‐conjugated semiconductors exhibiting substantial charge transport characteristics. However, current chalcogen‐based conformational lock strategies for organic semiconductors are limited to S···X (X = O, N, halide) weak interactions. An easily accessible (minimal synthetic steps) and structurally planar selenophene‐based building block, 1,2‐diethoxy‐1,2‐bisselenylvinylene ( DESVS ), with novel Se···O noncovalent conformational locks is designed and synthesized. DESVS unique properties are supported by density functional theory computed electronic structures, single crystal structures, and experimental lattice cohesion metrics. Based on this building block, a new class of stable, structurally planar, and solution‐processable conjugated polymers are synthesized and implemented in organic thin‐film transistors (TFT) and organic photovoltaic (OPV) cells. DESVS ‐based polymers exhibit carrier mobilities in air as high as 1.49 cm2 V?1 s?1 (p‐type) and 0.65 cm2 V?1 s?1 (n‐type) in TFTs, and power conversion efficiency >5% in OPV cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号