首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Shape memory effect in polymer materials has attracted considerable attention due to its promising applications in a variety of fields. However, shape memory polymers prepared by conventional strategy suffer from a common problem, in which high strain capacity and excellent shape memory behavior cannot be simultaneously achieved. This study reports a general and synergistic strategy to fabricate high‐strain and tough shape memory organohydrogels that feature binary cooperative phase. The phase‐ transition micro‐organogels and elastic hydrogel framework act synergistically to provide excellent thermomechanical performance and shape memory effect. During shape memory process, the organohydrogels exhibit high strain capacity, featuring fully recoverable stretching deformation by up to 2600% and compression by up to 85% beneath a load ≈20 times the organohydrogel's weight. Furthermore, owing to the micro‐organogel and hydrogel heterostructures, the interfacial tension derived from heterophases dominates the shape recovery of the organohydrogel material. Simple processing and smart surface patterning of the shape memory behavior and multiple shape memory effects can also be realized. Meanwhile, these organohydrogels are also nonswellable in water and oil, which is important for multimedia applications.  相似文献   

4.
A newly developed polyacrylamide‐co ‐methyl acrylate/spiropyran (SP) hydrogel crosslinked by SP mechanophore demonstrates multi‐stimuli‐responsive and mechanically strong properties. The hydrogels not only exhibit thermo‐, photo‐, and mechano‐induced color changes, but also achieve super‐strong mechanical properties (tensile stress of 1.45 MPa, tensile strain of ≈600%, and fracture energy of 7300 J m?2). Due to a reversible structural transformation between spiropyran (a ring‐close) and merocyanine (a ring‐open) states, simple exposure of the hydrogels to white light can reverse color changes and restore mechanical properties. The new design approach for a new mechanoresponsive hydrogel is easily transformative to the development of other mechanophore‐based hydrogels for sensing, imaging, and display applications.  相似文献   

5.
Achieving multifunctional shape‐changing hydrogels with synergistic and engineered material properties is highly desirable for their expanding applications, yet remains an ongoing challenge. The synergistic design of multiple dynamic chemistries enables new directions for the development of such materials. Herein, a molecular design strategy is proposed based on a hydrogel combining acid–ether hydrogen bonding and imine bonds. This approach utilizes simple and scalable chemistries to produce a doubly dynamic hydrogel network, which features high water uptake, high strength and toughness, excellent fatigue resistance, fast and efficient self‐healing, and superfast, programmable shape changing. Furthermore, deformed shapes can be memorized due to the large thermal hysteresis. This new type of shape‐changing hydrogel is expected to be a key component in future biomedical, tissue, and soft robotic device applications.  相似文献   

6.
High‐water‐content hydrogels that are both mechanically robust and conductive could have wide applications in fields ranging from bioengineering and electronic devices to medicine; however, creating such materials has proven to be extremely challenging. This study presents a scalable methodology to prepare superelastic, cellular‐structured nanofibrous hydrogels (NFHs) by combining alginate and flexible SiO2 nanofibers. This approach causes naturally abundant and sustainable alginate to assemble into 3D elastic bulk NFHs with tunable water content and desirable shapes on a large scale. The resultant NFHs exhibit the integrated properties of ultrahigh water content (99.8 wt%), complete recovery from 80% strain, zero Poisson's ratio, shape‐memory behavior, injectability, and elastic‐responsive conductivity, which can detect dynamic pressure in a wide range (>50 Pa) with robust sensitivity (0.24 kPa?1) and durability (100 cycles). The fabrication of such fascinating materials may provide new insights into the design and development of multifunctional hydrogels for various applications.  相似文献   

7.
8.
9.
增强形状记忆聚合物材料研究进展   总被引:2,自引:0,他引:2  
本文介绍了增强形状记忆聚合物的最新研究进展,详细探讨了各种增强材料对形状记忆聚合物的形状记忆效应的影响,总结了增强形状记忆聚合物研究的若干热点问题.  相似文献   

10.
11.
介绍了形状记忆聚合物的形状记忆效应机理,对其不同驱动方式进行比较和评价,并且系统介绍了形状记忆聚合物在航天航空、生物医疗、纺织、温度指示、防伪指示以及微流体混合器等工程领域的应用。针对形状记忆聚合物目前开发和应用的大趋势,分析了形状记忆聚合物的多功能化研究现状,通过比较本征型和复合型导电形状记忆聚合物,说明了本征型导电形状记忆聚合物材料的优越特性和广阔的应用前景。  相似文献   

12.
13.
目的分析并总结近年来关于形状记忆聚合物(SMP)的研究及其在高科技领域的应用进展,并提出今后的发展趋势。方法在分析SMP形状记忆机理的基础上,较为系统地介绍SMP的制备方法和工艺,总结改性方法对SMP材料主要性能的影响,指出其在一些高科技领域的应用潜能和形状记忆生物基聚合物复合材料的发展前途。结论制备工艺是影响SMP的力学性能和记忆性能等的主要因素;采用适当的改性方法可以有效改善SMP材料的延伸性和多功能性,能够拓宽其在智能包装、航空航天、医疗器械和机器人等高科技领域的应用。  相似文献   

14.
15.
16.
电致型形状记忆聚合物复合材料的研究进展   总被引:1,自引:0,他引:1  
介绍了电致型形状记忆聚合物复合材料的最新研究进展,详细探讨了碳黑、碳纳米管、碳纤维等导电填料对形状记忆聚合物复合材料的电性能和形状记忆效应的影响,分析了电致型形状记忆聚合物复合材料在实际应用中存在的问题,并展望了未来的研究方向。  相似文献   

17.
18.
形状记忆聚合物作为一类新型功能材料,具有独特优点,近年来在机理研究和工程应用方面均受到高度重视。由于其功能实现主要是通过热激励实现的,建立其热力学本构方程是开展该类功能材料变形机理研究的基础。本文首先通过单拉伸实验研究了热致形状记忆聚氨酯在预应变分别为0%、5%、10%和20%下的形状冻结和恢复性能。考虑其冻结/恢复时间延迟效应、应力松弛效应以及热变形效应的影响,对其变形过程进行了理论分析。结果证实,理论预测值与实验测试结果较为吻合。  相似文献   

19.
Stimuli-responsive shape-transforming hydrogels have shown great potential toward various engineering applications including soft robotics and microfluidics. Despite significant progress in designing hydrogels with ever more sophisticated shape-morphing behaviors, an ultimate goal yet to be fulfilled is programmable reversible shape transformation. It is reported here that transient structural anisotropy can be programmed into copolymer hydrogels of N-isopropylacrylamide and stearyl acrylate. Structural anisotropy arises from the deformed hydrophobic domains of the stearyl groups after thermomechanical programming, which serves as a template for the reversible globule-to-coil transition of the poly(N-isopropylacrylamide) chains. The structural anisotropy is transient and can be erased upon cooling. This allows repeated programming for reversible shape transformation, an unknown feature for the current hydrogels. The programmable reversible transformation is expected to greatly extend the technical scope for hydrogel-based devices.  相似文献   

20.
Light‐responsive hydrogel particles with multi‐compartmental structure are useful for applications in microreactors, drug delivery and tissue engineering because of their remotely‐triggerable releasing ability and combinational functionalities. The current methods of synthesizing multi‐compartmental hydrogel particles typically involve multi‐step interrupted gelation of polysaccharides or complicated microfluidic procedures with limited throughput. In this study, a two‐step sequential gelation process is developed to produce agarose/alginate double network multi‐compartmental hydrogel particles using droplets assemblies induced by superhydrophobic surface as templates. The agarose/alginate double network multi‐compartmental hydrogel particles can be formed with diverse hierarchical structures showing combinational functionalities. The synthesized hydrogel particles, when loaded with polypyrrole (PPy) nanoparticles that act as photothermal nanotransducers, are demonstrated to function as near‐infrared (NIR) light triggerable and deformation‐free hydrogel materials. Periodic NIR laser switching is applied to stimulate these hydrogel particles, and pulsatile release profiles are collected. Compared with massive reagents released from single‐compartmental hydrogel particles, more regulated release profiles of the multi‐compartmental hydrogel particles are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号