首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Masakazu Sakaguchi 《Fuel》2010,89(10):3078-3084
A slurry of bio-oil and char originating from wood pyrolysis is a promising gasifier feed-stock because of its high energy density. When such a slurry is injected into a high temperature gasifier it undergoes a rapid pyrolysis yielding a char which then reacts with steam. The char produced by pyrolysis of an 80 wt% bio-oil/20 wt% char mixture at heating rates of 100-10,000 °C/s was subjected to steam gasification in a thermogravimetric analyzer. The original wood char from the bio-oil production was also tested. Gasification was conducted with 10-50 mol% steam at temperatures from 800 to 1200 °C. Reactivity of the slurry chars increased with pyrolysis heating rate, but was lower than that of the original chars. Kinetic parameters were established for a power-law rate model of the steam-char reaction, and compared to values from the literature. At temperatures over 1000 °C, the gasification rates appeared to be affected by diffusional resistance.  相似文献   

2.
Qingsong Sun  Fuchen Wang 《Fuel》2011,90(3):1041-5249
Pine wood was pyrolyzed in a fixed bed reactor at a heating rate of 10 °C and a final temperature of 700 °C, and the resultant volatiles were allowed to be secondarily cracked through a tubular reactor in a temperature range of 500-700 °C with and without packing a bed of char. The thermal effect and the catalytic effect of char on the cracking of tar were investigated. An attempt was made to deconvolute the intermingled contributions of the char-catalyzed tar cracking and the char gasification to the yields of gaseous and liquid products. It was found that the wood char (charcoal) was catalytically active for the tar cracking at 500-600 °C, while at 650-700 °C, the thermal effect became a dominant mode of the tar cracking. Above 600 °C, the autogenerated steam gasified the charcoal, resulting in a marked increase in the yield of gaseous product and a significant change in the gas composition. An anthracite char (A-char), a bituminous coal char (B-char), a lignite char (L-char) and graphite also behaved with catalytic activities towards the tar cracking at lower temperature, but only L-char showed reactivity for gasification at higher temperature.  相似文献   

3.
Z. Abu El-Rub  E.A. Bramer  G. Brem   《Fuel》2008,87(10-11):2243-2252
In this paper the potential of using biomass char as a catalyst for tar reduction is discussed. Biomass char is compared with other known catalysts used for tar conversion. Model tar compounds, phenol and naphthalene, were used to test char and other catalysts. Tests were carried out in a fixed bed tubular reactor at a temperature range of 700–900 °C under atmospheric pressure and a gas residence time in the empty catalyst bed of 0.3 s. Biomass chars are compared with calcined dolomite, olivine, used fluid catalytic cracking (FCC) catalyst, biomass ash and commercial nickel catalyst. The conversion of naphthalene and phenol over these catalysts was carried out in the atmosphere of CO2 and steam. At 900 °C, the conversion of phenol was dominated by thermal cracking whereas naphthalene conversion was dominated by catalytic conversion. Biomass chars gave the highest naphthalene conversion among the low cost catalysts used for tar removal. Further, biomass char is produced continuously during the gasification process, while the other catalysts undergo deactivation. A simple first order kinetic model is used to describe the naphthalene conversion with biomass char.  相似文献   

4.
介绍了平顶山地区有代表性的7种煤样在800℃~1 200℃下,其脱灰煤焦-CO2气化反应活性的实验,主要考察了煤种、灰含量及粒径对煤焦反应性的影响,实验结果表明:煤种对煤焦-CO2气化反应有明显影响;煤中灰分对煤焦气化反应的影响主要表现在两个方面,一是灰成分对煤焦气化反应的催化作用,二是灰熔融性影响煤焦气化排渣行为。脱灰既可以除去煤焦中具有催化作用的矿物质,又可以增大煤焦的内表面积。  相似文献   

5.
Mithilesh Kumar  Ramesh C. Gupta 《Fuel》1994,73(12):1922-1925
Gasification rates of cubic shaped acacia and eucalyptus wood chars were measured thermogravimetrically in a carbon dioxide atmosphere at temperatures in the range 810–960 °C. The effects of wood species and carbonization conditions, such as temperature, heating rate and soaking time, were determined. Both reactivity and the activation energy for the gasification of wood chars were found to be strongly influenced by the carbonization conditions employed during their preparation and wood type. The reactivities of both the acacia and eucalyptus wood chars decreased with increasing preparation temperature; while the activation energy for their gasification increased. Slow carbonization (heating rate: 4 °C min−1) led to the production of wood chars having lower reactivities and higher activation energies than those of the wood chars prepared under rapid carbonization (heating rate: 30 °C min−1) at the same temperature. With increasing soaking time, at carbonization temperatures of 800 and 1000 °C, the reactivity of resulting wood chars was reduced. The results also show that the reactivities of acacia wood chars are higher than those of similarly prepared eucalyptus wood chars.  相似文献   

6.
Dimple Mody Quyn  Chun-Zhu Li 《Fuel》2003,82(5):587-593
The purpose of this study is to investigate the catalytic effects of Na as NaCl or as sodium carboxylates (-COONa) in Victorian brown coal on the char reactivity. A Na-exchanged coal and a set of NaCl-loaded coal samples prepared from a Loy Yang brown coal were pyrolysed in a fluidised-bed/fixed-bed reactor and in a thermogravimetric analyser (TGA). The reactivities of the chars were measured in air at 400 °C using the TGA. The experimental data indicate that the Na in coal as NaCl and as sodium carboxylates (-COONa) had very different catalytic effects on the char reactivity. It is the chemical form and dispersion of Na in char, not in coal, that govern the catalytic effects of Na. For the Na-form (Na-exchanged) coal, the char reactivity increased with increasing pyrolysis temperature from 500 to 700 °C and then decreased with pyrolysis temperature from 700 to 900 °C. The increase in reactivity with pyrolysis temperature (500-700 °C) is mainly due to the changes in the relative distribution of Na in the char matrix and on the pore surface. For the NaCl-loaded coals, when Cl was released during pyrolysis or gasification, the Na originally present in coal as NaCl showed good catalytic effects for the char gasification. Otherwise, Cl would combine with Na in the char to form NaCl during gasification, preventing Na from becoming an active catalyst. Controlling the pyrolysis conditions to favour the release of Cl can be a promising way to transform NaCl in coal into an active catalyst for char gasification.  相似文献   

7.
Arrhenius kinetic parameters have been determined for the CO2 gasification of chars (heat treatment at 1000 °C) prepared from well-characterized samples of a hardwood, a softwood and a Montana lignite. The effects of pre-pyrolysis addition of inorganic salts of the alkali, alkaline earth and transition metal groups to the wood samples have also been determined. The reactivities of the chars of the cottonwood and lignite samples exceeded that of Douglas fir char by a factor of four to seven between 700 and 900 °C. The reactivity of the wood char was related to the inorganic content of the sample. There was very little difference in the reactivity of chars prepared from the hardwood and the softwood after treatment with similar quantities of inorganic salts. The inorganic content of the lignite char was more than five times greater than that of cottonwood char, but its reactivity was similar. The carbonates of sodium and potassium were equally effective gasification catalysts. The transition metal salts were the most effective catalysts initially, but they lost their activity well before the gasification was complete. The data indicate that treatment of wood with aqueous salts results in replacement of some of the natural minerals by ion exchange, and that these exchangeable ions play a major role in controlling reactivity of the chars.  相似文献   

8.
Co-gasification behavior of meat and bone meal char and coal char   总被引:1,自引:0,他引:1  
The co-gasification behavior of meat and bone meal (MBM) char and two types of coal (Jincheng anthracite (JC) and Huolinhe lignite (HLH)) char was investigated using a thermogravimetric analyzer (TGA). The effects of coal type, mineral matter in MBM, gasification temperatures and contacting conditions between MBM char and coal char on the gasification behavior were studied. The results show that the gasification behavior of MBM char and HLH char can be well described by ash diffusion controlled shrinking core model, while that of JC char can be described by chemical reaction controlled shrinking core model. The co-gasification rate of MBM/JC chars at 950 °C is approximately 1.5 times faster than that calculated from independent behavior. The mineral matter in MBM may play as a catalyst during co-gasification. However, the analogous effect observed in the blends of HLH/MBM chars is smaller, suggesting that the coal types play a great role. Furthermore, as the gasification temperature increased from 850 to 1000 °C, the maximum synergistic effect is observed at 900 °C. The lower temperature is not conducive to transferring the mineral matters of MBM to the coal char, while the higher temperature makes Na and Ca react with minerals of coal, leading to a loss of catalytic activity.  相似文献   

9.
Laboratory-scale experiments were performed on chars from German hard coals with potassium carbonate addition. The steam gasification rate at 4 MPa and 700 °C as a function of the amount of catalyst added is described for a low-and high-ash char. From the burn-off behaviour the reaction order relative to carbon was determined. For the low-ash char a uniform reaction order was found but the high-ash char indicated a complex interaction of catalytic gasification, catalyst deactivation, and the development of the reacting surface.  相似文献   

10.
碱金属及灰分对煤焦碳微晶结构及气化反应特性的影响   总被引:3,自引:1,他引:3  
通过对原煤、酸洗原煤、酸洗后负载NaOH的原煤在750~1050℃热解制得焦样,用X射线衍射技术考察了热解温度、NaOH负载量以及灰分对热解过程中煤焦微晶结构变化的影响,并运用高温高压热天平(PTGA)考察了热解后煤焦的气化反应活性。结果表明碱金属及灰分的存在可以明显减小煤焦的微晶结构参数的变化(堆垛高度Lc、微晶尺寸La、及晶层间距d002),阻碍煤焦的石墨化进程,提高煤焦的气化反应性。随着热解温度的升高,堆垛高度Lc增大显著,而微晶尺寸La和晶层间距d002变化较小。煤焦的气化反应性k0和煤焦微晶结构参数Lc、d002存在如下关系:lnk0=a(Lc/d002)+b;研究还表明用氧化还原循环机理来描述碱金属的催化作用机理是不恰当的,但碱金属Na的存在可以明显降低煤焦的石墨化程度,提高煤的活性,对煤焦的气化起到部分催化作用。  相似文献   

11.
Catalytic gasification of a woody biomass, Japanese cypress, was investigated under a prepared nickel-loaded brown coal (LY-Ni) char in a two-stage fixed-bed reactor. The nickel-loaded brown coal was prepared by ion-exchange method with a nickel loading rate of 8.3 wt.%. Nickel species dispersed well in the brown coal, and the LY-Ni char via devolatilization at 600 °C showed a great porous property with a specific surface area of 382 m2 g− 1.The LY-Ni char was confirmed to be quite active for the Japanese cypress volatiles gasification at a relatively low-temperature range from 450 to 650 °C. For example, at 550 °C, 16.6 times hydrogen gas and 6.3 times total gases were yielded from the catalytic steam gasification of Japanese cypress volatiles under the LY-Ni char, compared with the case of non-catalyst. The biomass tar decomposition showed a dependence on catalyst temperatures. When the catalyst temperature was higher than 500 °C, Japanese cypress tar converted much efficiently, high gas yields and high carbon balances were obtained.  相似文献   

12.
Gasification of a char prepared from hydrocracked residuum was compared with the gasification of chars prepared from bituminous and sub-bituminous Canadian coals, wood and graphite. Each material was mixed with 10 mass per cent K2CO3 and pyrolyzed up to 900°C. The yield of char was inversely proportional to the amount of volatile matter in the original material. The char prepared from hydrocracked residuum was different from the others. The other chars all followed zero-order gasification kinetics. Gasification of char prepared from the residuum was first-order in the solid. The development of a liquid phase during the pyrolysis of the residuum to char may explain this difference. The gasification rate of the char. from residuum was slower than the rates with the two coal chars and the wood char, but faster than the gasification rate of graphite. A combination of transient experiments and X-ray photoelectron spectroscopic (XPS) measurements indicated that hydrogen was formed almost instantaneously when steam reacted with the char. XPS spectra at liquid nitrogen temperature indicated that during gasification the formation of carbon oxygen bonds proceeded in the following sequence: COH, CO and CO.  相似文献   

13.
Experiments on gasification of chars obtained from original and pulverised wood pellets were conducted in atmosphere of water steam and nitrogen under temperatures of 800, 900 and 950 °C. Molar flow rates of carbon containing product gases were measured and approximated using different models with respect to extents of carbon conversion in char of the pellets. Comparison of the random pore, grain and volumetric models revealed the best applicability for approximations of the random pore model. Apparent activation energies obtained as a result of application of the models to the data from experiments with char of original pellets were higher in comparison to those of pulverised pellets, except for a grain model. Approximations under 800 °C showed relatively big deviations from experimental data on the beginning of char gasification. This is attributed to catalytic effects from alkali metals in the pellets.  相似文献   

14.
Daniel M. Keown  Chun-Zhu Li 《Fuel》2008,87(7):1127-1132
An Australian cane trash biomass was pyrolysed by heating at a slow heating rate to 700-900 °C in an inert gas atmosphere. The chars were then gasified in situ with steam. Our results indicate that the gasification of char with steam, even only for 20 s when the char conversion was minimal, resulted in drastic reduction in the intrinsic reactivity of char with air at 400 °C. The decreases in the char reactivity were not mainly due to the possible volatilisation of inherent catalysts during gasification in steam. Instead, the FT-Raman spectroscopy of the chars showed that the gasification of char with steam resulted in drastic changes in char structure including the transformation of smaller ring systems (3-5 fused rings) to large ring systems (?6 fused rings). It is believed that the intermediates of char-steam reactions, especially H, penetrated deep into the char matrix to induce the ring condensation reactions.  相似文献   

15.
The physicochemical, surface and catalytic properties of 10 and 20 wt% CuO, NiO or (CuO–NiO) supported on cordierite (commercial grade) calcined at 350–700 °C were investigated using XRD, EDX, nitrogen adsorption at −196 °C and CO oxidation by O2 at 220–280 °C. The results obtained revealed that the employed cordierite preheated at 350–700 °C was well-crystallized magnesium aluminum silicate (Mg2Al4Si5O18). Loading of 20 wt% CuO or NiO on the cordierite surface followed by calcination at 350 °C led to dissolution of a limited amount of both CuO and NiO in the cordierite lattice. The portions of CuO and NiO dissolved increased upon increasing the calcination temperature. Treating a cordierite sample with 20 wt% (CuO–NiO) followed by heating at 350 °C led to solid–solid interaction between some of the oxides present yielding nickel cuprate. The formation of NiCuO2 was stimulated by increasing the calcination temperature above 350 °C. However, raising the temperature up to ≥550 °C led to distortion of cuprate phase. The chemical affinity towards the formation of NiCuO2 acted as a driving force for migration of some of copper and nickel oxides from the bulk of the solid towards their surface by heating at 500–700 °C. The SBET of cordierite increased several times by treating with small amounts of NiO, CuO or their binary mixtures. The increase was, however, less pronounced upon treating the cordierite support with CuO–NiO. The catalytic activity of the cordierite increased progressively by increasing the amount of oxide(s) added. The mixed oxides system supported on cordierite and calcined at 450–700 °C exhibited the highest catalytic activity due to formation of the nickel cuprate phase. However, the catalytic activity of the mixed oxides system reached a maximum limit upon heating at 500 °C then decreased upon heating at temperature above this limit due to the deformation of the nickel cuprate phase.  相似文献   

16.
Impact of torrefaction on syngas production from wood   总被引:1,自引:0,他引:1  
C. Couhert  S. Salvador 《Fuel》2009,88(11):2286-2290
Torrefaction is a way to treat biomass before transportation or thermochemical conversion. It can be used to increase the energy content of wood or to facilitate grinding. The purpose of this paper was to quantify the impact of such a treatment on the behaviour of wood during gasification by steam at high temperature to produce syngas. The aspects of both gas yields and reaction kinetics were considered.Beechwood was submitted both to light torrefaction and severe torrefaction, using a specially designed crossed fixed bed reactor. The initial wood and the torrefied woods were first characterised, then gasified in a new laboratory high-temperature entrained flow reactor (HT-EFR) at 1400 °C for 2 s in an atmosphere containing 20 vol% steam in N2. The syngas produced was then analysed. The experiments were modelled using a thermo-dynamical equilibrium approach.It was confirmed that torrefaction decreased the O/C ratio. The quantity of syngas produced increased with the severity of the torrefaction. The equilibrium approach describes the results satisfactorily.Gasification experiments carried out at a lower temperature - 1200 °C - indicated that the chars from torrefied woods are less reactive towards steam than the char from wood.  相似文献   

17.
The gasification of pure and cobalt-doped chars obtained by carbonization of wood sawdust is compared. The catalytic action of cobalt affects both the kinetics of char gasification and the texture of the resulting porous carbons.  相似文献   

18.
The fate of the chlorine and fluorine present in a sub-bituminous coal from Indonesia during pyrolysis and gasification has been studied with fixed and entrained bed reactors. The rate profile for HCl evolved in the temperature programmed pyrolysis exhibits the main and shoulder peaks at 480 and 600 °C, respectively. Model experiments and subsequent Cl 2p XPS measurements show that HCl reacts with metal impurities and carbon active sites at 500 °C to be retained as inorganic and organic chlorine forms, from which HCl evolves again at elevated temperatures. It is suggested that the HCl observed in the coal pyrolysis may originate from the above-mentioned chlorine functionalities formed by secondary reactions involving the nascent char. In the CO2 gasification of the 900 °C char at 1000 °C and 2.5 MPa, any measurable amounts of HCl and HF could not be detected even at a high conversion of 75 wt% (daf), suggesting the accumulation of these halogens in the residual char. When the coal is injected into an O2-blown, entrained bed gasifier at 1200-1400 °C under 2.6 MPa, the partial oxidation proceeds to a larger extent at a higher O2/coal ratio, whereas the chlorine and fluorine are enriched in the remaining char, and the extent of the enrichment at the latter stage of gasification is larger with the fluorine. The XPS measurements of the chars reveal the presence of the broad F 1 s peak, which can cover a wide range of binding energies attributable to inorganic and organic fluorine. The halogen enrichment during gasification is discussed in terms of secondary reactions of HCl and HF with char.  相似文献   

19.
Two Chinese coals were used in this study and coal chars were prepared at different temperatures. High temperature gasification of coal chars with CO2 was investigated in a bench scale fixed-bed reactor and the transformations of minerals from these two coals were also studied from 1100 to 1500 °C. Mineral matters produced at different temperature and ash generated after gasification were collected and analyzed by XRD and FTIR. It was found that the iron oxides were only catalytic mineral matters existing at high temperature. And gasification behaviors above ash melting temperature were different for different mineral composition, especially the content and form of iron oxide, which not only accelerates the gasification reaction, but also reduces the influence caused by melting minerals.  相似文献   

20.
《Fuel》2002,81(4):423-429
A kinetic study on the gasification of carbonised grapefruit (Citrus Aurantium) skin with CO2 and with steam is presented. The chars from this agricultural waste show a comparatively high reactivity, which can be mostly attributed to the catalytic effect of the inorganic matter. The ash content of the carbonised substrate used in this work falls around 15% (db) potassium being the main metallic constituent. The reactivity for both, CO2 and steam gasification, increases at increasing conversion and also does the reactivity per unit surface area, consistently with the aforementioned catalytic effect. Lowering the ash content of the char by acid washing leads to a decrease of reactivity thus confirming the catalytic activity of the inorganic matter present in the starting material. Saturation of this catalytic effect was not detected within the conversion range investigated covering in most cases up to 0.85-0.9. Apparent activation energy values within the range of 200-250 kJ/mol have been obtained for CO2 gasification whereas the values obtained for steam gasification fall mostly between 130 and 170 kJ/mol. These values become comparable with the reported in the literature for other carbonaceous raw materials including chars from biomass residues and coals under chemical control conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号