首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
采用溶胶凝胶法制备了碳载纳米双金属Ni-Pt(5%,质量分数)/C电催化剂,用TEM、XRD和XPS表征金属粒子的形貌、晶相结构、表面元素及其价态,循环伏安法测试催化剂在碱性溶液中电催化氧化甲醇的活性。结果表明,Ni-Pt金属粒子在碳载体上分布均匀,粒径为3~6nm,少量Pt的掺杂对纳米Ni活性有明显提高,其中,合金型Ni-Pt(5%)/C在1.0mol/LNaOH+1.0mol/LCH3OH溶液中峰电流密度可达85.6mA/mg,是Ni/C峰电流密度的8.7倍,达到Pt/C峰电流密度的15.3%。单位质量铂的电流显著提高。  相似文献   

2.
碳载Pd-Co-Au合金纳米粒子的制备及其电催化性能   总被引:1,自引:0,他引:1  
采用乙二醇还原法并进一步热处理制备碳载Pd-Co-Au(Pd-Co-Au/C)三元合金纳米电催化剂,通过旋转圆盘和环盘电极等技术评价催化剂对氧气还原反应的电催化活性,并分析氧气还原的机理.结果表明:合成Pd-Co-Au/C催化剂中Pd和Au两相面心立方(fcc)结构共存,且随着热处理温度的提高,对应于Au的衍射峰强度减弱,而Pd衍射峰强度增强:当温度高于800℃时,形成具有Pd单相fcc结构的三元合金纳米催化剂.氧气还原反应的动力学表明:氧气在Pd-Co-Au/C三元合金催化剂上按4e路径还原为水.电化学表征表明,在酸性介质中,经800℃热处理的Pd7Co<<2>Au1/C催化剂对氧气还原的电催化活性最高,接近于商业化Pt/C的性能;而在含甲醇的酸性介质中,Pd-Co-Au/C催化剂电催化氧气还原的活性显著高于Pt/C.因此,Pd-Co-Au/C是一种高抗甲醇的新型氧气还原反应电催化剂.  相似文献   

3.
本文以氯铂酸、氯化镍和硝酸钴为原料,XC-72炭黑为载体,通过雾化干燥法结合煅烧还原制备碳载铂基(PtCo Ni)分散性好的多元合金纳米粒子催化剂。重点研究表面经过改性的炭黑对合金纳米粒子形成和分散的影响规律,研究碳载PtCoNi(原子比为1:1:1)合金纳米粒子的甲醇催化氧化活性、抗CO中毒能力和耐久性,以及不同原子比对催化氧化甲醇活性和抗CO中毒能力的影响规律。研究结果表明,采用表面改性后的炭黑作为载体,制备的碳载铂基(PtCoNi)催化剂为合金纳米粒子,且纳米粒子在炭黑表面分散均匀,粒径分布在1-4nm,平均粒径为2.3nm;与商用的Pt/C催化剂相比,PtCoNi/C(原子比为1:1:1)催化剂具有更高的甲醇催化氧化活性、耐久性和抗CO中毒性;不同原子比铂基多元催化剂在催化氧化甲醇活性上的顺序为:PtCoNi/C>Pt3CoNi/C>Pt5CoNi/C,抗CO中毒性顺序为:PtCoNi/C>Pt3CoNi/C>Pt5CoNi/C。  相似文献   

4.
在含不同摩尔比的Au(Ⅲ)和Pt(Ⅳ)离子的PEG(聚乙二醇)-丙酮溶液中,采用光化学共还原法合成了一组Au@Pt复合纳米粒子,并以炭黑分别对其负载制成Au@Pt/C催化剂。借助于UV-Vis、TEM和HR-TEM的表征,证实复合纳米粒子为球形的核/壳结构;分别以XPS、EDS和电化学方法分析了复合粒子的化学状态、结构特点和Au@Pt/C催化剂的催化性质。结果表明,不同Au:Pt摩尔比的Au@Pt/C催化剂对甲醇氧化反应具有良好的催化活性和稳定性,其中Au:Pt=1:1时形成的Au@Pt/C催化剂电催化活性最高,约为商品Pt/C催化剂的4倍。简要讨论了核/壳结构产生高催化活性的主要原因。  相似文献   

5.
采用溶胶法制备了用于阴离子膜直接甲醇燃料电池的Pt-Ni/C阴极电催化剂,用XRD、XPS和TEM对催化剂进行了表征,电位线性扫描伏安法测试电化学活性及抗甲醇性.结果表明,制备的Pt-Ni合金颗粒分布均匀,粒径为3~5 nm;掺杂Ni元素可显著增加Pt的催化活性和抗甲醇性,在相同碱性电解液中,不同原子比例Pt-Ni/C的催化剂以Pt50Ni50/C的活性最高,抗甲醇性相对Pt/C有显著提高,在0.1 mol/L KOH溶液中其最大电流密度达到106 mA/mg,氧电还原起始过电位比Pt/C的小50 mV.  相似文献   

6.
以低温合成法制备了Pt掺杂的W-Ru-Se纳米簇合物,并应用旋转圆盘电极线性电位扫描法测试其对氧还原反应的电催化性能,采用XRD、EDS、XPS表征结构及表面组成。结果表明,掺杂Pt后W-Ru-Se对氧还原反应活性明显提高,尤其以掺杂5%Pt(质量分数, 下同)的W-Ru-Se活性提高最为显著,在0.5 mol?L-1 H2SO4中Pt-W-Ru-Se (5%Pt)的氧还原起始电位为0.25 V,峰电流密度为310 mA?mg-1,是W-Ru-Se峰电流密度的2.2倍,活性接近于Pt/C。电解液中存在甲醇时,Pt-W-Ru-Se (5%Pt)的活性和抗甲醇性优于Pt/C  相似文献   

7.
采用胶体法分别以乙酰丙酮铂(Pt(acac)_2)和乙酸镍(Ni(ac)_2·4H_2O)为前驱体制备了(1:3,1:1,3:1)不同摩尔比的Pt-Ni合金纳米粒子,将其负载在XC-72碳黑载体获得Pt-Ni/C双金属催化剂,其中Pt_3Ni/C催化剂催化活性最高,其正向扫描峰电流密度是42.5 m A·cm~(-2),分别是Pt Ni/C、Pt Ni3/C和Pt/C催化剂的3.2、5.3和1.2倍;而催化剂抗中毒能力则是Pt Ni_3/C最强(I f/I b值为23.5)。TEM和XRD分析表明Pt-Ni双金属纳米粒子单分散性好,粒径分布为2~4nm;同时XPS结果表明Ni的掺杂改变了Pt的外层电子层结构,减少了表面Pt原子对CO的吸附,释放出更多的Pt活性位,从而提高了Pt-Ni/C双金属催化剂的电催化活性和抗中毒能力。  相似文献   

8.
采用浸渍还原法制备不同比例的AuPd/C纳米粒子;分别采用X线衍射仪(XRD)和透射电镜(TEM)对催化剂进行结构和形貌分析;利用CHI660a电化学工作站对催化剂进行电化学测试,结果表明:催化剂材料均为面心立方结构,AuPd/C中纳米合金粒子的粒径为5 nm左右,比Au/C中的纳米Au粒子更小,且均匀分散在VXC-72R炭黑的表面;Au/C的峰电流密度为25.05 mA/cm2,与Au/C相比,AuPd/C明显提高NaBH4的电氧化催化活性;以纳米AuPd/C为阳极催化剂、Au/C为阴极催化剂制成直接NaBH4-H2O2燃料电池(DBHFC),发现以Au1Pd2/C为阳极催化剂的DBHFC拥有良好的电池性能;在温度为60℃、NaBH4浓度为1 mol/L时DBHFC的最大功率密度达到114.6 mW/cm2。  相似文献   

9.
以一步浸渍法制备了Pd/M-NF(M=Fe、Co、Cu)复合电极;利用XRD、SEM和XPS对电极进行表征;采用循环伏安和计时电流法对电极催化甲醇/乙醇电氧化活性及稳定性进行了测试。结果表明,Pd:M的原子比为=6:1时达到最大催化活性。由于Pd6/Cu1-NF电极表面的Pd粒子最小,展现了最好的催化性能;Fe与Pd的协同作用最大,Pd6/Fe1-NF电极的单位比表面积的电流密度最高。过渡金属的掺杂,减小了Pd纳米粒子的粒径,提升了电极的比表面积,改变了Pd的电子结构,提供了更多的催化反应活性位,进而提升了其催化甲醇/乙醇的电氧化性能。  相似文献   

10.
采用化学共还原法制备了聚乙烯吡咯烷酮(PVP)稳定的Pd/Ni双金属纳米溶胶,采用TEM、HR-TEM等对所合成的Pd/Ni双金属纳米溶胶进行了表征,并系统研究了PVP用量、还原剂用量、金属盐离子浓度及金属比例等对该溶胶型双金属纳米催化剂的影响。结果表明:所制备的Pd/Ni双金属纳米溶胶的平均粒径在2 nm左右,双金属纳米溶胶催化剂催化NaBH_4制氢活性优于单金属Pd和Ni纳米溶胶的活性。其中Pd_(10)Ni_(90)双金属纳米溶胶的催化活性最高,其催化NaBH_4制取氢气的活性可以达到8250 mol_(H2)·mol_(Pd)~(-1)·h~(-1),Pd_(20)Ni_(80)双金属纳米溶胶催化剂催化NaBH_4水解反应的活化能为35.7 kJ/mol,反应焓为33.3 kJ/mol,反应熵为-150 J/mol。研究结果还表明,所制备的Pd/Ni双金属纳米溶胶催化剂具有很好的催化稳定性,即使4次催化试验后该催化剂仍然保持着较高的催化活性。密度泛函理论计算结果表明,Ni原子与Pd原子之间发生的电子转移使得Pd原子带负电而Ni原子带正电,荷电的Pd和Ni原子成为催化反应的活性中心。  相似文献   

11.
本文以氯铂酸氨和氯化镍为原料,氯化铵作为造孔剂,通过雾化干燥法结合煅烧还原制备铂镍合金三维纳米骨架材料,该新型材料可增强催化甲醇氧化性能。重点研究了前驱体中加入氯化铵和不加入对铂镍合金三维纳米骨架形成的影响规律,研究不同结构的铂镍合金三维纳米骨架材料对催化氧化甲醇活性和稳定性的影响规律。研究结果表明,通过加入适量的氯化铵作为造孔剂,制备的铂镍合金为单项固溶体结构(面心立方结构),由弯曲纳米线交织组成三维纳米骨架材料,纳米线直径小于10 nm,纳米孔10 nm左右;与商用Pt黑和不加入氯化铵制备的铂镍合金纳米材料相比,PtNi合金三维纳米骨架材料具有更高的甲醇催化氧化活性(611.4 mA.mg-1Pt),分别是商用Pt黑的3.58倍(170.8 mA.mg-1Pt)和PtNi合金纳米材料(不加氯化铵)的1.36倍(448.8 mA.mg-1Pt);在催化甲醇氧化性能稳定性上,PtNi合金三维纳米骨架材料表现出最好的稳定性,稳定性顺序为:PtNi合金三维纳米骨架材料 > PtNi合金纳米材料(不加氯化铵)> 商用Pt黑。此外,本文对该方法进行了扩展,成功的制备了铂镍钴铜钌铱钯(PtNiCoCuRuIrPd)高熵合金三维纳米骨架材料。  相似文献   

12.
以乙酰丙酮铂(Pt(acac)2)、乙酰丙酮镍(Ni(acac)2)为前驱体,三正辛基氧膦(TOPO)为表面修饰剂,油胺(OAm)为还原剂,N,N-二甲基甲酰胺(DMF)为助剂,超导碳科琴黑ECP为载体,采用液相合成法制备了碳载PtNi合金纳米催化剂(Pt2.7Ni/C)。通过TEM对其形貌进行表征,ICP-AES进行定性和定量分析,XRD对其结构进行表征,并进行电化学阴极氧还原催化性能研究。研究表明:所制备的Pt2.7Ni/C纳米催化剂粒径分布在3~11 nm之间,平均粒径为6.25 nm;在酸性条件下,当电位在0.9 V(vs.RHE)时,Pt2.7Ni/C纳米催化剂的质量比活性为796.08 mA·mgPt-1,为商业Pt/C(JM)催化剂的约4.0倍,面积比活性为3.60 mA·cm-2,为商业Pt/C(JM)催化剂的约11.3倍。同时在经过5000和10 000次的加速耐久性实验后,Pt2.7...  相似文献   

13.
用低温合成法制备出不同Pt掺杂量的Pt-W-Ru-Se催化剂,应用旋转圆盘电极电位扫描法测试其对氧还原反应的催化作用,采用XRD、EDS、XPS技术表征结构及表面组成。结果表明,Pt能够显著增强W-Ru-Se对氧还原反应的催化活性,尤其以含5%Pt(质量分数,下同)的Pt-W-Ru-Se催化剂最为明显,在0.5mol·L-1H2SO4中其对氧还原反应的电催化活性超过了W-Ru-Se和Pt;甲醇存在时,其稳定性和抗甲醇性也都超过了Pt。  相似文献   

14.
Au@Pt core-shell nanoparticles were successfully synthesized by a successive reduction method and then assembled on Vulcan XC-72 carbon surface.Furthermore,its composition,morphology,structure,and activity towards methanol oxidation were characterized by UV-vis spectrometry,transmission electron microscopy (TEM),high-resolution TEM (HRTEM),X-ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS),and cyclic voltammetry (CV).Results reveal that Au@Pt/C catalyst has better activity towards methanol oxidation than the pure platinum prepared under the same conditions.When the atomic ratio of Au to Pt in the prepared Au@Pt/C catalyst is 1∶2,this catalyst exhibits best electrocatalytic activity towards methanol oxidation in acidic media,and the peak current density on this catalyst is ~2.0times higher than that on Pt/C catalyst.The better catalytic activity of Au@Pt/C results from its better resistance to toxic CO than Pt/C because the CO oxidation on Au@Pt/C is 60 mV more negative than the case on Pt/C.  相似文献   

15.
采用KBH4做还原剂、PVP做保护剂,化学法一步合成Au-Pt合金纳米粒子,应用UV-Vis、TEM、XRD等手段对其进行了表征.将所合成的合金纳米粒子负载在碳黑上,获得Au-Pt双金属碳载催化剂,应用循环伏安法(CV)检测了催化剂对甲醇的电催化氧化活性.研究表明,Au-Pt/C催化剂的催化活性明显高于Pt/C的,说明...  相似文献   

16.
A successful approach to prepare the Pd–Ni nanowire arrays electrode without carbon supports was reported. The morphology and crystallinity of nanowire were characterized by transmission electron microscopy, selected-area electron diffraction(SAED), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS) analyses, respectively. The results show that the diameters of the nanowire are in the range of 65–75 nm, and the polycrystalline binary solid solution alloy is formed in the Pd–Ni nanowire. Cyclic voltammograms, chronoamperograms, and electrochemical impedance spectroscopy demonstrate that the Pd–Ni nanowire arrays electrodes show excellent electrocatalytic performance for methanol oxidation in alkaline media. The catalytic activity of Pd–Ni nanowire arrays electrode is *1.39 times higher than that of the Pd nanowire arrays electrode and *2.28 times higher than that of the commercial Pd/C catalyst. This is mostly owing to the transfer of electron density from Ni to Pd. These results indicate that Pd–Ni nanowire arrays electrode is very promising in an alkaline direct methanol fuel cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号