首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a virtual GaN substrate on sapphire based on a two-step growth method. By optimizing the growth scheme for the virtual substrate we have improved crystal quality and reduced interface roughness. Our Al0.22Ga0.78N/GaN HEMT structure grown on the optimized semi-insulating GaN virtual substrate, exhibits Hall mobilities as high as 1720 and 7350 cm2/Vs and sheet carrier concentrations of 8.4 × 1012 and 10.0 × 1012 cm− 2 at 300 K and 20 K, respectively. The presence of good AlGaN/GaN interface quality and surface morphology is also substantiated by X-Ray reflectivity and Atomic Force Microscopy measurements. A simplified transport model is used to fit the experimental Hall mobility.  相似文献   

2.
We present the realization of high electron mobility transistors (HEMTs) based on AlGaN/GaN heterostructures, which were grown on silicon substrates using an ultrathin SiC transition layer. The growth of AlGaN/GaN heterostructures on 3C-SiC(111)/Si(111) was performed using metalorganic chemical vapour deposition (MOCVD). The 3C-SiC(111) transition layer was realized by low pressure CVD and prevented Ga-induced meltback etching and Si-outdiffusion in the subsequent MOCVD growth. The two-dimensional electron gas (2DEG) formed at the AlGaN/GaN interface showed an electron sheet density of 1.5 × 1013 cm− 3 and a mobility of 870 cm2/Vs. The HEMTs DC and RF characteristics were analysed and showed a peak cut-off frequency as high as 29 GHz for a 250 nm gate length.  相似文献   

3.
Selective plasma treatment of an AlGaN/GaN heterostructure in the RF discharge of the electronegative SF6 gas was studied. Shallow recess-gate etching of AlGaN (∼5 nm) was performed in CCl4 plasma through a photoresist mask. Subsequently, recess-gate etching followed in situ by SF6 plasma. The plasma treatment provides the following advantages in the technology of AlGaN/GaN high-electron mobility transistors (HEMT): It (1) simplifies their technology; (2) ensures sufficient selectivity; and (3) enables the technologist to set the threshold voltage of the HEMTs controllably. At the same time, the treatment can (1) provide the AlGaN/GaN heterostructure with surface passivation; (2) modify the 2DEG in any area of a HEMT channel; and (3) make it possible to convert a HEMT operation from depletion mode to enhancement mode. The treatment also improved significantly the DC and RF parameters of HEMTs studied.  相似文献   

4.
We have found that SiN passivation by catalytic chemical vapor deposition (Cat-CVD) can significantly increase an electron density of an AlGaN/GaN heterostructure field-effect transistor (HFET). This effect enables thin-barrier HFET structures to have a high-density two-dimensional electron gas and leads to suppression of short-channel effects. We fabricated 30-nm-gate Al0.4Ga0.6N(8 nm)/GaN HFETs using Cat-CVD SiN. The maximum drain current density and extrinsic transconductance were 1.49 A/mm and 402 mS/mm, respectively. Current-gain cutoff frequency and maximum oscillation frequency of the HFETs were 181 and 186 GHz, respectively. These high-frequency device characteristics are sufficiently high enough for millimeter-wave applications.  相似文献   

5.
We have demonstrated that the surface recombination velocity can be lowered to as low as 1.3 cm/s for n-type c-Si wafers and to 9.0 cm/s for p-type wafers by using amorphous Si (a-Si) and Si nitride (SiNx) stacked films prepared by catalytic chemical vapor deposition (Cat-CVD). These values are much lower than those of c-Si wafers passivated by same stacked structures formed by low-damage remote plasma-enhanced CVD (PECVD). It is revealed that Cat-CVD a-Si insertion layers play an important role to improve interface quality, and also SiNx films are also essential for reducing the surface recombination velocity down to such low levels.  相似文献   

6.
The passivation effects of AlOx films were investigated for p-type crystalline Si (c-Si) solar cells. The AlOx films were deposited on 10 Ωcm c-Si substrates by catalytic chemical vapor deposition (Cat-CVD) using tri-methyl aluminum (TMA) and O2 at a film temperature of 230 °C. The surface recombination velocity (S0) at the AlOx/Si interface was measured to be below 0.5 cm/s for AlOx films deposited with O2/TMA gas flow-rate ratios of 15-35. This ultra low S0 was achieved primarily by band bending due to the negative interface fixed-charge density (Nf) of an order of 1012 charges/cm2. The decrease in interface trapping density Dit in the negative fixed charge region assists in decreasing S0.  相似文献   

7.
“Super H2O-barrier film” with a water vapor transmission rate (WVTR) less than 1 mg/m2/day has been developed. The barrier layer is a single layer of amorphous SiCN grown by organic Cat-CVD (O-Cat-CVD) with a thickness of 100 nm. SiCN has been grown by using a gas mixture of monomethylsilane (MMS; Si (CH3)H3), NH3 and H2 on polyethylene-naphthalate (PEN) film substrates. It has been found that the WVTR drastically depends on the W-filament temperature of O-Cat-CVD. The WVTR changed from 5 × 10−1 to 1 × 10−3, corresponding to the W-filament temperature increase from 1100 to 1200 C. We have recently succeeded in developing the “super H2O-barrier film” by the coating of single layers of SiCN for both sides of the PEN film without using the widely used polymer/inorganic multilayer coating. The both-side coating has been found to be crucial to avoid the H2O penetration into PEN films and also to avoid the breakdown of the SiCN/PEN interface caused by the H2O accumulation at the interface.  相似文献   

8.
A.P. Pathak  G. Devaraju  I. Kyriakou 《Vacuum》2010,84(8):1049-1057
III-Nitrides have attracted much attention due to their versatile and wide range of applications, such as blue/UV light emitting diodes. Strained layer super lattices offer extra degree of freedom to alter the band gap of lattice-mismatched heterostructures. Swift heavy ion irradiation is a post-growth technique to alter the band gap of semiconductors, spatially. In the present study, strained AlGaN/GaN multi-quantum wells (MQWs) were grown on sapphire with insertion of AlN and GaN as buffer layers between substrate and epilayers. Such grown AlGaN/GaN MQWs, AlGaN/GaN heterostructures and GaN layers were irradiated with 200 MeV Au and 150 MeV Ag ions at a fluence of 5 × 1011 ions/cm2 and 5 × 1012 ions/cm2 respectively. As-grown and irradiated samples have been characterized by high resolution XRD, photoluminescence and RBS/channelling. Measured strain values show that strain increases upon irradiation and the luminescence properties are enhanced. RBS/channelling confirms the increase in strain values upon irradiation. In this paper we describe the effects of swift heavy ion irradiation on structural and optical properties.  相似文献   

9.
The energy distribution and density of interface traps (Dit) are directly investigated from bulk-type and thin-film transistor (TFT)-type charge trap flash memory cells with tunnel oxide degradation, under program/erase (P/E) cycling using a charge pumping (CP) technique, in view of application in a 3-demension stackable NAND flash memory cell. After P/E cycling in bulk-type devices, the interface trap density gradually increased from 1.55 × 1012 cm−2 eV−1 to 3.66 × 1013 cm−2 eV−1 due to tunnel oxide damage, which was consistent with the subthreshold swing and transconductance degradation after P/E cycling. Its distribution moved toward shallow energy levels with increasing cycling numbers, which coincided with the decay rate degradation with short-term retention time. The tendency extracted with the CP technique for Dit of the TFT-type cells was similar to those of bulk-type cells.  相似文献   

10.
A GaN buffer layer grown under Ga-lean conditions by plasma-assisted molecular beam epitaxy (PAMBE) was used to reduce the dislocation density in a GaN film grown on a sapphire substrate. The Ga-lean buffer, with inclined trench walls on its surface, provided an effective way to bend the propagation direction of dislocations, and it reduced the dislocation density through recombination and annihilation processes. As a result, the edge dislocation density in the GaN film was reduced by approximately two orders of magnitude to 2 × 108 cm− 2. The rough surface of the Ga-lean buffer was recovered using migration enhanced epitaxy (MEE), a process of alternating deposition cycle of Ga atoms and N2 radicals, during the PAMBE growth. By combining these two methods, a GaN film with high-crystalline-quality and atomically-flat surface can be achieved by PAMBE on a lattice mismatch substrate.  相似文献   

11.
Planar nonpolar (112?0) a-plane GaN films have been grown by metalorganic chemical-vapor deposition directly on cone-shaped patterned r-plane sapphire substrates (PRSS) fabricated by dry etching. High-resolution X-ray diffractometers 2θ-ω scan confirmed that the films grown on PRSS are solely a-plane oriented, and the full width at half maximum values (FWHM) of the X-ray rocking curves for (112?0) GaN along [0001]GaN and [11?00]GaN were found to be 684 and 828″, respectively. As compared to the film grown on conventional r-plane sapphire substrate which typically has (112?0) omega FWHM values of 900 and 2124″ along [0001]GaN and [11?00]GaN respectively, the film grown on PRSS exhibits overall reduced omega FWHM values, and much smaller anisotropy behavior of crystallinity with respect to the in-plane orientation. The surface morphology is also improved by utilizing the PRSS technique. Cross-sectional transmission electron microscopy analysis shows that the density of threading dislocations has been greatly reduced from ~ 1.0 × 1010 cm− 2 above the flat sapphire regions to ~ 1.0 × 107 cm− 2 above the protruding cone patterns. The improvement of crystal quality and the increase of light extraction efficiency by using cone-shaped PRSS technique lead to a strong enhancement in the light emission of a-plane GaN films. These results indicate that growth of a-plane GaN films on cone-shaped PRSS shows promise for use in high-quality and high-cost-performance nonpolar GaN based devices.  相似文献   

12.
Resistivity and Hall effect measurements on nominally undoped Al0.25Ga0.75N/GaN/AlN heterostructures grown on sapphire substrates prepared by metal organic chemical vapor deposition have been carried out as a function of temperature (20-300 K) and magnetic field (0-1.4 T). Variable magnetic field Hall data have been analyzed using the improved quantitative mobility spectrum analysis technique. The mobility and density of the two-dimensional electron gas at the AlGaN/GaN interface and the two-dimensional hole gas at the GaN/AlN interface are separated by quantitative mobility spectrum analysis. The analysis shows that two-channel conduction is present in nominally undoped Al0.25Ga0.75N/GaN/AlN heterostructures grown on sapphire substrate.  相似文献   

13.
J.X. Zhang  Y. Qu  A. Uddin  S.J. Chua 《Thin solid films》2007,515(10):4397-4400
GaN epitaxial layer was grown on Si(111) substrate by metalorganic chemical vapor deposition (MOCVD). The structure consists of 50 nm thick high-temperature grown AlN buffer layer, 150 nm thick AlGaN layer, 30 nm low-temperature grown AlN layer, 300 nm GaN layer, 50 nm AlGaN superlattice layer, followed by 100 nm GaN epitaxial layer. The low-temperature AlN interlayer and AlGaN superlattice layer were inserted as the defect-blocking layers in the MOCVD grown sample to eliminate the dislocations and improve the structural and optical properties of the GaN layer. The dislocation density at the top surface was decreased to ∼ 2.8 × 109/cm2. The optical quality was considerably improved. The photoluminescence emission at 3.42-3.45 eV is attributed to the recombination of free hole-to-donor electron. The observed 3.30 eV emission peak is assigned to be donor-acceptor transition with two longitudinal optical phonon side bands. The relationship of the peak energy and the temperature is discussed.  相似文献   

14.
Zinc oxide (ZnO) was incorporated into metal-insulator-semiconductor (MIS) structures featuring high dielectric constant (high-κ) barium tantalate (BaTa2O6)or alumina (Al2O3)as the insulator, and the structures were electrically evaluated for potential applications in transparent thin film transistors. The ZnO films were deposited by radio-frequency magnetron sputtering at 100 °C whereas the dielectric films were deposited by the same method at room temperature. The leakage currents of both the BaTa2O6 and Al2O3 structures were on the order of 10−7A/cm2. The trap density and trapped charge concentration at the BaTa2O6/ZnO interface were determined to be 6.18 × 1011 eV−1 cm−2and 5.82 × 1011 cm−2 from conductance-voltage and capacitance-voltage measurements. At the Al2O3/ZnO interface the trap density and trapped charge were more than an order of magnitude smaller at 1.09 × 1010 eV−1 cm−2and 1.04 × 1010 cm−2 respectively. The BaTa2O6 structures had significantly larger frequency dispersions due to the larger number of interface traps. Chemical analysis using X-ray photoelectron spectroscopy with depth profiling indicates that acceptor type defects associated with a deficiency of oxygen are related to the observed electron trapping in the BaTa2O6MIS structure. Overall, the results indicate that Al2O3 would be better suited for transparent thin film transistors deposited at low temperature or without substrate heating.  相似文献   

15.
A thin-film structure comprising Al2O3/Al-rich Al2O3/SiO2 was fabricated on Si substrate. We used radio-frequency magnetron co-sputtering with Al metal plates set on an Al2O3 target to fabricate the Al-rich Al2O3 thin film, which is used as a charge storage layer for nonvolatile Al2O3 memory. We investigated the charge trapping characteristics of the film. When the applied voltage between the gate and the substrate is increased, the hysteresis window of capacitance-voltage (C-V) characteristics becomes larger, which is caused by the charge trapping in the film. For a fabricated Al-O capacitor structure, we clarified experimentally that the maximum capacitance in the C-V hysteresis agrees well with the series capacitance of insulators and that the minimum capacitance agrees well with the series capacitance of the semiconductor depletion layer and stacked insulator. When the Al content in the Al-rich Al2O3 is increased, a large charge trap density is obtained. When the Al content in the Al-O is changed from 40 to 58%, the charge trap density increases from 0 to 18 × 1018 cm− 3, which is 2.6 times larger than that of the trap memory using SiN as the charge storage layer. The device structure would be promising for low-cost nonvolatile memory.  相似文献   

16.
The effects of nitrogen ion bombardment on TiO2 films prepared by the Cat-CVD method have been studied to improve the optical and electrical properties of the material for use in Si thin film solar cells. The refractive index n and the dark conductivity of the TiO2 film increased with irradiation time. The refractive index n of the TiO2 film was changed from 2.1 to 2.4 and the electrical conductivity was improved from 3.4 × 10− 2 to 1.2 × 10− 1 S/cm by the irradiation. These results are due to the formation of Ti-N bonds and oxygen vacancies in the film.  相似文献   

17.
Hong-Di Xiao  Rong Liu  Zhao-Jun Lin 《Vacuum》2009,83(11):1393-1396
Amorphous GaN (a-GaN) films on Si (111) substrates have been deposited by RF magnetron sputtering with GaN powder target. The growth process from amorphous GaN to polycrystalline GaN is studied by XRD, SEM, PL and Raman. XRD data mean that annealing under flowing ammonia at 850-950 °C for 10 min converts a-GaN into polycrystalline GaN (p-GaN). The growth mechanism can be mostly reaction process through N3− in amorphous GaN replaced by N3− of NH3. Annealing at 1000 °C, the appearance of GaN nanowires can be understood based on the vapor-liquid-solid (VLS) mechanism. In addition, XRD, PL and Raman measurement results indicate that the quality of GaN films increases with increasing temperature. The tensile stress in the films obtained at 1000 °C is attributable to the expansion mismatch between GaN and Si, with the gallium in the film playing a negligible role.  相似文献   

18.
With the help of MgO mask layer, LiNbO3 (LN) ferroelectric films were etched effectively using wet etching method and LN/AlGaN/GaN ferroelectric field-effect transistors (FFETs) were fabricated. The electrical properties of the FFETs were studied. Due to the ferroelectric polarization nature of LN films, normally-off characteristics with a turn-on voltage of about + 1.0 V were exhibited in the device. The operation mechanisms of the LN/AlGaN/GaN FFET devices were proposed by the numerical calculations of the electronic band structure and charge distribution.  相似文献   

19.
L. Zhang  J. Li  X.Y. Jiang 《Thin solid films》2010,518(21):6130-6133
A high-performance ZnO thin film transistor (ZnO-TFT) with SiO2/Ta2O5/SiO2 (STS) multilayer gate insulator is fabricated by sputtering at room temperature. Compared to ZnO-TFTs with sputtering SiO2 gate insulator, its electrical characteristics are significantly improved, such as the field effect mobility enhanced from 11.2 to 52.4 cm2/V s, threshold voltage decreased from 4.2 to 2 V, and sub-threshold swing improved from 0.61 to 0.28 V/dec. The improvements are attributed to the high gate capacitance (from 50 to 150 nF/cm2) as well as nice surface morphology by using dielectric with high~k Ta2O5 sandwiched by SiO2 layers. The capacitance-voltage characteristic of a metal-insulator-semiconductor capacitor with the structure of Indium Tin Oxide/STS/ZnO/Al was investigated and the trap charges at the interface or bulk is evaluated to be 2.24 × 1012 cm2. From the slope of C2 versus gate voltage, the doping density ND of ZnO is estimated to be 1.49 × 1016 cm3.  相似文献   

20.
Ultra thin films of pure β-Si3N4 (0001) were grown on Si (111) surface by exposing the surface to radio- frequency nitrogen plasma with a high content of nitrogen atoms. Using β-Si3N4 layer as a buffer layer, GaN epilayers were grown on Si (111) substrate by plasma-assisted molecular beam epitaxy. The valence band offset (VBO) of GaN/β-Si3N4/Si heterojunctions is determined by X-ray photoemission spectroscopy. The VBO at the β-Si3N4 / Si interface was determined by valence-band photoelectron spectra to be 1.84 eV. The valence band of GaN is found to be 0.41 ± 0.05 eV below that of β-Si3N4 and a type-II heterojunction. The conduction band offset was deduced to be ~ 2.36 eV, and a change of the interface dipole of 1.29 eV was observed for GaN/β-Si3N4 interface formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号