共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
探讨了在研究磨削表面粗糙度的过程中,能否在传统的以磨粒切削刃为研究对象的研究方法之外,建立一种新的研究途径的可能性.提出了平面磨削加工中,从宏观角度研究表面粗糙度影响因素的磨削模型,认为砂轮可以等效成若干个宽度为f的连续的小砂轮组成的砂轮组.提出在一定的磨削条件下,存在磨削参数对表面粗糙度影响的临界值.指出材料弹性模量在磨削加工中对表面粗糙度具有非常重要的影响.同时结合传统理论,进行了一系列的试验验证,得到了很好的吻合.认为在目前加工参数范围内,对Ra影响显著的因素是砂轮线速度、轴向进给量和砂轮的磨损. 相似文献
4.
磨削参数对陶瓷加工表面粗糙度影响的实验研究 总被引:2,自引:0,他引:2
李向东 《机械工程与自动化》2005,(3):90-92
介绍用正交实验法分析磨削反应烧结Si3N4陶瓷时,树脂结合剂金刚石砂轮磨削参数对表面粗糙度的影响。通过对砂轮粒度、砂轮速度、磨削深度、进给速度等四因素及各因素之间交互三水平实验的数据分析,找出了对表面粗糙度影响的一些规律,确定了降低表面粗糙度的磨削参数优化组合。该研究结果完善了单因素分析形成的影响规律,对生产领域有重要的指导意义。 相似文献
5.
对曲面磨削表面粗糙度成型原理进行了分析,得出曲面磨削时其表面粗糙度由磨粒划痕和砂轮两步距间的残留高度构成。探讨了其分布均匀性的原理,揭示了各参数对其均匀性的影响。通过砂轮进给速度的变速控制,可以降低约60%的表面粗糙度波动率。根据理论分析可知,在加工凹曲面时,其理论残留高度值约为凸曲面的两倍。实际加工时,采用较小的砂轮进给步距或砂轮圆弧半径可达到凸曲面的表面粗糙度效果。 相似文献
6.
7.
工程陶瓷主轴沟道表面磨削加工的实验研究 总被引:1,自引:0,他引:1
基于实验室自主设计研发的全陶瓷电主轴,利用曲线磨床对工程陶瓷主轴沟道进行磨削加工以及运用手工研磨的方法进行研磨。研究砂轮转速、工件转速、进给量、横向进给速度等磨削工艺参数对沟道表面粗糙度的影响,以及研磨工艺参数、磨料粒度、研磨时间、主轴转速对沟道表面轮廓度的影响。揭示了磨削参数与研磨参数对氧化锆陶瓷主轴沟道表面质量的影响,为硬脆材料高效的成型磨削加工提供参考依据。 相似文献
8.
基于零件加工表面粗糙度在线检测困难问题,应用BP网络建模对外圆磨削加工表面粗糙度值进行预测,并通过实验验证所建模型的正确性,同时也验证了实验数据的准确性。 相似文献
9.
平面磨削表面粗糙度预测模型的研究 总被引:1,自引:0,他引:1
对平面磨削表面表面粗糙度进行了试验研究。在回归正交试验的基础上,建立了表面粗糙度与磨削用量(轴向进给量、磨削深度、工作台速度)之间的回归预报模型。由方差分析及显著性检验表明所建数学模型显著(F=6.06〉F0.06=4.77),试验结果预报值与试验值间的相关系数达到显著水平(R=0.9492),说明建立的数学模型具有较强的应用性,为平面磨削表面粗糙度的预报与控制打下基础。 相似文献
10.
11.
12.
根据砂带磨削的原理设计了开式接触轮式砂带磨削装置,并将其应用于普通车床,对机械加工中较难加工的细长轴进行砂带磨削试验。通过试验分析了砂带转速、工件转速、磨削深度等因素对工件表面粗糙度的影响,并对磨削参数进行优化。结果表明在车床上采用开式接触轮式砂带磨削装置对细长轴进行精加工,能有效地降低表面粗糙度。在工件转速nW=1 000 r/min、砂带转速nS=3 r/min、磨削深度ap=0.07 mm、纵向进给速度f=0.02 mm/r条件下,能获得最优的表面粗糙度Ra0.48μm。 相似文献
13.
14.
15.
概述了具有光滑表面的硬脆材料的应用前景,介绍了国内外在硬脆材料超光滑表面精密磨削技术上的发展现状,提出了获得硬脆材料超光滑磨削表面的主要技术措施,并从国情实际情况出发,提出了我国在超精密磨削技术方面今后应开展的研究工作。 相似文献
16.
17.
用表面粗糙度参数Ra等来评定易于产生加工破碎的硬脆材料的表面质量是不全面的。本文提出以表面破碎率这一新参数作为评定指标。实验结果证明,表面破碎率能较完整地反映陶瓷等硬脆材料磨削表面的微观几何特性。 相似文献
18.
在线电妥修整技术成功地解决了铸铁超微细金刚石/CBN砂轮的修锐,使砂轮在磨削中始终能免保持锐利的磨削能力,使超细超硬磨料充分地发挥其高效率。笔者开发了ELID磨削系统,对陶瓷刀具材料进行了精密镜面磨削试验,取得了良好效果。 相似文献
19.
高速低粗糙度外圆切入磨削表面波纹度的试验研究 总被引:1,自引:0,他引:1
以高速低粗糙度外圆切入磨削表面纹度对研究对象,研究在低粗糙度磨削条件下,砂轮转速和工件转速对磨削表面波纹度的影响,在试验研究的基础上对对磨削表面波纹度的成因及机理进行了分析和讨论。 相似文献