首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our recent investigations have shown that smooth muscle myosin light chain kinase (MLCK) exists in solution as a mixture of oligomeric, dimeric and monomeric species; besides during preincubation (maintaining of the activated enzyme without substrate) with substoichiometric amounts of calmodulin (CaM) it undergoes definite changes leading to several fold lowering of its activity. Fluorescent data obtained in this work suggest that such kinase inhibition must not be connected with quantitative redistribution of different kinase species but rather it is the result of conformational modifications of this enzyme activated molecules leading to the reduction of their affinity to CaM. Such conformational rearrangements took place also at equimolar kinase to CaM ratio (or CaM excess) but in this case they were characterized by lower depth and insignificant MLCK activity fall. The nature of these conformational changes is discussed.  相似文献   

2.
Hydrophobic interactions between a bilayer and its embedded membrane proteins couple protein conformational changes to changes in the packing of the surrounding lipids. The energetic cost of a protein conformational change therefore includes a contribution from the associated bilayer deformation energy (DeltaGdef0), which provides a mechanism for how membrane protein function depends on the bilayer material properties. Theoretical studies based on an elastic liquid-crystal model of the bilayer deformation show that DeltaGdef0 should be quantifiable by a phenomenological linear spring model, in which the bilayer mechanical characteristics are lumped into a single spring constant. The spring constant scales with the protein radius, meaning that one can use suitable reporter proteins for in situ measurements of the spring constant and thereby evaluate quantitatively the DeltaGdef0 associated with protein conformational changes. Gramicidin channels can be used as such reporter proteins because the channels form by the transmembrane assembly of two nonconducting monomers. The monomerleft arrow over right arrow dimer reaction thus constitutes a well characterized conformational transition, and it should be possible to determine the phenomenological spring constant describing the channel-induced bilayer deformation by examining how DeltaGdef0 varies as a function of a mismatch between the hydrophobic channel length and the unperturbed bilayer thickness. We show this is possible by analyzing experimental studies on the relation between bilayer thickness and gramicidin channel duration. The spring constant in nominally hydrocarbon-free bilayers agrees well with estimates based on a continuum analysis of inclusion-induced bilayer deformations using independently measured material constants.  相似文献   

3.
Global conformational transitions are of central functional importance for many enzymes and binding proteins. It is not known, however, how much variability can exist in such structural-functional linkages. We have characterized the global magnitude of the T to R conformational transition of Escherichia coli aspartate transcarbamylase (ATCase) by measuring (1) hydration changes using osmotic stress and (2) hydrodynamic changes using high-precision analytical gel chromatography. We find that specific mutations can alter the structural magnitude of the enzyme's conformational transition without abolishing allostery, suggesting that some degree of plasticity exists in the conformational component of allostery.  相似文献   

4.
Calcium sensor proteins translate transient increases in intracellular calcium levels into metabolic or mechanical responses, by undergoing dramatic conformational changes upon Ca2+ binding. A detailed analysis of the calcium binding-induced conformational changes in the representative calcium sensors calmodulin (CaM) and troponin C was performed to obtain insights into the underlying molecular basis for their response to the binding of calcium. Distance difference matrices, analysis of interresidue contacts, comparisons of interhelical angles, and inspection of structures using molecular graphics were used to make unbiased comparisons of the various structures. The calcium-induced conformational changes in these proteins are dominated by reorganization of the packing of the four helices within each domain. Comparison of the closed and open conformations confirms that calcium binding causes opening within each of the EF-hands. A secondary analysis of the conformation of the C-terminal domain of CaM (CaM-C) clearly shows that CaM-C occupies a closed conformation in the absence of calcium that is distinct from the semi-open conformation observed in the C-terminal EF-hand domains of myosin light chains. These studies provide insight into the structural basis for these changes and into the differential response to calcium binding of various members of the EF-hand calcium-binding protein family. Factors contributing to the stability of the Ca2+-loaded open conformation are discussed, including a new hypothesis that critical hydrophobic interactions stabilize the open conformation in Ca2+ sensors, but are absent in "non-sensor" proteins that remain closed upon Ca2+ binding. A role for methionine residues in stabilizing the open conformation is also proposed.  相似文献   

5.
The non-covalent assembly of proteins that fold separately is central to many biological processes, and differs from the permanent macromolecular assembly of protein subunits in oligomeric proteins. We performed an analysis of the atomic structure of the recognition sites seen in 75 protein-protein complexes of known three-dimensional structure: 24 protease-inhibitor, 19 antibody-antigen and 32 other complexes, including nine enzyme-inhibitor and 11 that are involved in signal transduction.The size of the recognition site is related to the conformational changes that occur upon association. Of the 75 complexes, 52 have "standard-size" interfaces in which the total area buried by the components in the recognition site is 1600 (+/-400) A2. In these complexes, association involves only small changes of conformation. Twenty complexes have "large" interfaces burying 2000 to 4660 A2, and large conformational changes are seen to occur in those cases where we can compare the structure of complexed and free components. The average interface has approximately the same non-polar character as the protein surface as a whole, and carries somewhat fewer charged groups. However, some interfaces are significantly more polar and others more non-polar than the average. Of the atoms that lose accessibility upon association, half make contacts across the interface and one-third become fully inaccessible to the solvent. In the latter case, the Voronoi volume was calculated and compared with that of atoms buried inside proteins. The ratio of the two volumes was 1.01 (+/-0.03) in all but 11 complexes, which shows that atoms buried at protein-protein interfaces are close-packed like the protein interior. This conclusion could be extended to the majority of interface atoms by including solvent positions determined in high-resolution X-ray structures in the calculation of Voronoi volumes. Thus, water molecules contribute to the close-packing of atoms that insure complementarity between the two protein surfaces, as well as providing polar interactions between the two proteins.  相似文献   

6.
BACKGROUND: The redox proteins that incorporate a thioredoxin fold have diverse properties and functions. The bacterial protein-folding factor DsbA is the most oxidizing of the thioredoxin family. DsbA catalyzes disulfide-bond formation during the folding of secreted proteins. The extremely oxidizing nature of DsbA has been proposed to result from either domain motion or stabilizing active-site interactions in the reduced form. In the domain motion model, hinge bending between the two domains of DsbA occurs as a result of redox-related conformational changes. RESULTS: We have determined the crystal structures of reduced and oxidized DsbA in the same crystal form and at the same pH (5.6). The crystal structure of a lower pH form of oxidized DsbA has also been determined (pH 5.0). These new crystal structures of DsbA, and the previously determined structure of oxidized DsbA at pH 6.5, provide the foundation for analysis of structural changes that occur upon reduction of the active-site disulfide bond. CONCLUSIONS: The structures of reduced and oxidized DsbA reveal that hinge bending motions do occur between the two domains. These motions are independent of redox state, however, and therefore do not contribute to the energetic differences between the two redox states. Instead, the observed domain motion is proposed to be a consequence of substrate binding. Furthermore, DsbA's highly oxidizing nature is a result of hydrogen bond, electrostatic and helix-dipole interactions that favour the thiolate over the disulfide at the active site.  相似文献   

7.
A growing number of biologically important proteins have been identified as fully unfolded or partially disordered. Thus, an intriguing question is whether such proteins can be forced to fold by adding solutes found in the cells of some organisms. Nature has not ignored the powerful effect that the solution can have on protein stability and has developed the strategy of using specific solutes (called organic osmolytes) to maintain the structure and function cellular proteins in organisms exposed to denaturing environmental stresses (Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D., and Somero, G. N. (1982) Science 217, 1214-1222). Here, we illustrate the extraordinary capability of one such osmolyte, trimethylamine N-oxide (TMAO), to force two thermodynamically unfolded proteins to fold to native-like species having significant functional activity. In one of these examples, TMAO is shown to increase the population of native state relative to the denatured ensemble by nearly five orders of magnitude. The ability of TMAO to force thermodynamically unstable proteins to fold presents an opportunity for structure determination and functional studies of an important emerging class of proteins that have little or no structure without the presence of TMAO.  相似文献   

8.
Three methods have been used to assess the conformational effects associated with ligand binding to two unrelated cyclic nucleotide receptor proteins: the cGMP-binding, cGMP-specific phosphodiesterase (cGB-PDE or PDE5A) and the cGMP-dependent protein kinase (PKG). The methods should be applicable to other proteins and to other types of modification such as phosphorylation. The procedures use either ion-exchange chromatography, size-exclusion chromatography, or native gel electrophoresis of these proteins in the absence and presence of regulatory ligands. Measurements from these respective approaches allow documentation of changes in the quaternary structure, surface electronegativity, and relative compactness (Stokes radius) of the protein molecule. The combined data allow the changes in protein conformation to be quantitated in terms of alterations in the axial ratio or length/width dimension of the molecule. The methods can be applied to partially purified proteins and to proteins that are available in limited quantities. Conformational changes due to stable modifications of proteins can be potentially examined in crude extracts of intact cells. Each of the methods can be tailored to optimize resolution of a particular protein under a variety of conditions. Activity measurements, Coomassie brilliant blue or silver staining of gels, radioautography, or Western blot analysis can be used for detection of the protein.  相似文献   

9.
10.
How receptors talk to trimeric G proteins   总被引:1,自引:0,他引:1  
Stimulated by hormones and sensory stimuli, serpentine receptors promote the release of GDP that is bound to the alpha subunit of trimeric G proteins and its replacement by GTP. Recent investigations have begun to define the sizes, shapes, and relative orientations of receptors and G proteins, the surfaces through which they interact with one another, and conformational changes in both sets of molecules that underlie receptor-catalyzed guanine-nucleotide exchange.  相似文献   

11.
Ligand-binding-induced conformational changes in the Salmonella typhimurium aspartate receptor were studied using spin-labeling electron paramagnetic resonance. Cysteine residues, introduced by site-directed mutagenesis at several positions in the aspartate receptor periplasmic domain, were used to attach covalently a thiol-specific spin label. The electron paramagnetic resonance spectra of these labeled proteins were obtained in the presence and absence of the ligand aspartate, and used to calculate the distance change between spin labels. The results support a model in which transmembrane signaling is executed by a combined movement of alpha helix 4 (which leads into transmembrane domain 2) relative to alpha helix 1 (connected to transmembrane domain 1), as well as a coming together of the two subunits. Ligand binding causes spin labels at position 39 and 179 (within one subunit) to move further from each other and spin labels at position 39 and 39' (between two subunits) to move closer to each other. Both of these changes are very small-less than 2.5 A. No similar changes were detected in any aspartate receptor samples solubilized in detergent, suggesting that the membrane is required for these conformational changes. This is the first case of physically measured ligand-induced changes in a full-length 1-2 transmembrane domain receptor, and the results suggest that very small ligand-induced movements can result in large effects on the activity of downstream proteins.  相似文献   

12.
This paper evaluates the results of a protein structure prediction contest. The predictions were made using threading procedures, which employ techniques for aligning sequences with 3D structures to select the correct fold of a given sequence from a set of alternatives. Nine different teams submitted 86 predictions, on a total of 21 target proteins with little or no sequence homology to proteins of known structure. The 3D structures of these proteins were newly determined by experimental methods, but not yet published or otherwise available to the predictors. The predictions, made from the amino acid sequence alone, thus represent a genuine test of the current performance of threading methods. Only a subset of all the predictions is evaluated here. It corresponds to the 44 predictions submitted for the 11 target proteins seen to adopt known folds. The predictions for the remaining 10 proteins were not analyzed, although weak similarities with known folds may also exist in these proteins. We find that threading methods are capable of identifying the correct fold in many cases, but not reliably enough as yet. Every team predicts correctly a different set of targets, with virtually all targets predicted correctly by at least one team. Also, common folds such as TIM barrels are recognized more readily than folds with only a few known examples. However, quite surprisingly, the quality of the sequence-structure alignments, corresponding to correctly recognized folds, is generally very poor, as judged by comparison with the corresponding 3D structure alignments. Thus, threading can presently not be relied upon to derive a detailed 3D model from the amino acid sequence. This raises a very intriguing question: how is fold recognition achieved? Our analysis suggests that it may be achieved because threading procedures maximize hydrophobic interactions in the protein core, and are reasonably good at recognizing local secondary structure.  相似文献   

13.
Dehydration of proteins results in significant, measurable conformational changes as observed using Fourier-transform infrared spectroscopy and resolution-enhancement techniques. For several proteins these conformational changes are at least partially irreversible, since, upon rehydration, denaturation and aggregation are observed. The presence of certain stabilizers inhibited these dehydration-induced transitions; the native structure was preserved in the dried state and upon reconstitution. Conformational transitions were also observed in a model polypeptide, poly-L-lysine, after lyophilization and were inhibited with the addition of stabilizing cosolutes. The ability of a particular additive to preserve the aqueous structure of dehydrated proteins and poly-L-lysine upon dehydration correlates directly with its ability to preserve the activity of lactate dehydrogenase, a labile enzyme, during drying.  相似文献   

14.
In order to calculate the tertiary structure of a protein from its amino acid sequence, the thermodynamic approach requires a potential function of sequence and conformation that has its global minimum at the native conformation for many different proteins. Here we study the behavior of such functions for the simplest model system that still has the essential features of the protein folding problem, namely two-dimensional square lattice chain configurations involving two residue types. First we demonstrate a method for accurately recovering the given contact potential from only a knowledge of which sequences fold to which structures and what the non-native structures are. Second, we show how to derive from the same information more general potential functions having much better positive correlations between potential function value and conformational deviation from the native. These functions consequently permit faster and more reliable searches for the native conformation, given the native sequence. Furthermore, the method for finding such potentials is easily applied to more realistic protein models.  相似文献   

15.
The structural and functional evolution of the Kunitz/bovine pancreatic trypsin inhibitor (BPTI) family of proteins, which includes serine proteinase inhibitors and potassium channel blockers, was analysed with the evolutionary trace method. This method highlights sites in aligned primary sequences whose side-chain variation can be strongly linked with the past development of different functional classes or subgroups within the family. A total of 16 such "class-specific" positions distributed throughout the molecular fold were identified. On average, the side-chain chemistry at these positions had been more conserved and made greater contribution to molecular stability than the side-chain chemistry at remaining sites of variation. It was possible to use these 16 positions to describe the division of the Kunitz/BPTI family into general functional classes. According to known complexes of inhibitor variants with serine proteinases, only two of the 16 class-specific positions appear to be directly involved in intermolecular recognition via the "antiproteinase site". Instead, from various critical locations in the fold, the remainder seem to have been associated with various degrees of intramolecular conformational adjustment to the underlying framework of the antiproteinase site. It is, therefore, implied that functional diversification in this family has been founded upon both sustained evolutionary selection and conformational adjustment. The findings are important for protein engineers wishing to alter the binding selectivity of these molecules, because it appears that the issue of target recognition is dependent on the conformation of the chain segment to which the interactive side-chains are attached. To retarget members of this family towards potentially novel peptide binding sites, substitutions at certain structurally significant class-specific positions could be a good starting point.  相似文献   

16.
The secondary structures of the histones, H1, H2A, H2B, H3, and H4 have been predicted utilizing the predictive scheme of Chou and Fasman (Biochemistry 13:211, 222[1974]) and a new set of conformational parameters based on the X-ray data of 29 protein structures. The alpha-helical, beta-sheet, reverse beta-turns, and random coil regions of these proteins are carefully delineated. Structures are specified which are most probably under various environmental conditions, i.e., for changes in ionic strength, association between histones and in association with DNA. Potential conformational changes within these histones are also predicted.  相似文献   

17.
Specific recognition between proteins plays a crucial role in a great number of vital processes. In this review different types of protein-protein complexes are analyzed on the basis of their three-dimensional structures which became available in recent years. The complexes which are analyzed include: those resulting from different types of recognition between proteinase and protein inhibitor (canonical inhibitors of serine proteinases, hirudin, inhibitors of cysteine proteinases, carboxypeptidase inhibitor), barnase-barstar, human growth hormone-receptor and antibody-antigen. It seems obvious that specific and strong protein-protein recognition is achieved in many different ways. To further explore this question, the structural information was analyzed together with kinetic and thermodynamic data available for the respective complexes. It appears that the energy and rates of specific recognition of proteins are influenced by many different factors, including: area of interacting surfaces; complementarity of shapes, charges and hydrogen bonds; water structure at the interface; conformational changes; additivity and cooperativity of individual interactions, steric effects and various (conformational, hydration) entropy changes.  相似文献   

18.
alpha-Crystallin is a multimeric lenticular protein that has recently been shown to be expressed in several non-lenticular tissues as well. It is shown to prevent aggregation of non-native proteins as a molecular chaperone. By using a non-thermal aggregation model, we could show that this process is temperature-dependent. We investigated the chaperone-like activity of alpha-crystallin towards photo-induced aggregation of gamma-crystallin, aggregation of insulin and on the refolding induced aggregation of beta- and gamma-crystallins. We observed that alpha-crystallin could prevent photo-aggregation of gamma-crystallin and this chaperone-like activity of alpha-crystallin is enhanced several fold at temperatures above 30 degrees C. This enhancement parallels the exposure of its hydrophobic surfaces as a function of temperature, probed using hydrophobic fluorescent probes such as pyrene and 8-anilinonaphthalene-1-sulfonate. We, therefore, concluded that alpha-crystallin prevents the aggregation of other proteins by providing appropriately placed hydrophobic surfaces; a structural transition above 30 degrees C involving enhanced or re-organized hydrophobic surfaces of alpha-crystallin is important for its chaperone-like activity. We also addressed the issue of conformational aspects of target proteins and found that their aggregation prone molten globule states bind to alpha-crystallin. We trace these developments and discuss some new lines that suggest the role of tertiary structural aspects in the chaperone process.  相似文献   

19.
20.
There is currently a gap in knowledge between complexes of known three-dimensional structure and those known from other experimental methods such as affinity purifications or the two-hybrid system. This gap can sometimes be bridged by methods that extrapolate interaction information from one complex structure to homologues of the interacting proteins. To do this, it is important to know if and when proteins of the same type (e.g. family, superfamily or fold) interact in the same way. Here, we study interactions of known structure to address this question. We found all instances within the structural classification of proteins database of the same domain pairs interacting in different complexes, and then compared them with a simple measure (interaction RMSD). When plotted against sequence similarity we find that close homologues (30-40% or higher sequence identity) almost invariably interact the same way. Conversely, similarity only in fold (i.e. without additional evidence for a common ancestor) is only rarely associated with a similarity in interaction. The results suggest that there is a twilight zone of sequence similarity where it is not possible to say whether or not domains will interact similarly. We also discuss the rare instances of fold similarities interacting the same way, and those where obviously homologous proteins interact differently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号