首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For a variety of solar cells, it is shown that the single exponential $J{-}V$ model parameters, namely—ideality factor $eta$ , parasitic series resistance $R_{s}$, parasitic shunt resistance $R_{rm sh}$, dark current $J_{0}$, and photogenerated current $J_{rm ph}$ can be extracted simultaneously from just four simple measurements of the bias points corresponding to $V_{rm oc}$, $sim!hbox{0.6}V_{rm oc}$, $J_{rm sc}$, and $sim! hbox{0.6}J_{rm sc}$ on the illuminated $J{-}V$ curve, using closed-form expressions. The extraction method avoids the measurements of the peak power point and any $dJ/dV$ (i.e., slope). The method is based on the power law $J{-}V$ model proposed recently by us.   相似文献   

2.
New hydrogen-sensing amplifiers are fabricated by integrating a GaAs Schottky-type hydrogen sensor and an InGaP–GaAs heterojunction bipolar transistor. Sensing collector currents ( $I_{rm CN}$ and $I_{rm CH}$) reflecting to $hbox{N}_{2}$ and hydrogen-containing gases are employed as output signals in common-emitter characteristics. Gummel-plot sensing characteristics with testing gases as inputs show a high sensing-collector-current gain $(I_{rm CH}/I_{rm CN})$ of $≫hbox{3000}$. When operating in standby mode for in situ long-term detection, power consumption is smaller than 0.4 $muhbox{W}$. Furthermore, the room-temperature response time is 85 s for the integrated hydrogen-sensing amplifier fabricated with a bipolar-type structure.   相似文献   

3.
A 17 GHz low-power radio transceiver front-end implemented in a 0.25 $mu{hbox {m}}$ SiGe:C BiCMOS technology is described. Operating at data rates up to 10 Mbit/s with a reduced transceiver turn-on time of 2 $mu{hbox {s}}$, gives an overall energy consumption of 1.75 nJ/bit for the receiver and 1.6 nJ/bit for the transmitter. The measured conversion gain of the receiver chain is 25–30 dB into a 50 $Omega$ load at 10 MHz IF, and noise figure is 12 $pm$0.5 dB across the band from 10 to 200 MHz. The 1-dB compression point at the receiver input is $-$37 dBm and ${hbox{IIP}}_{3}$ is $-$25 dBm. The maximum saturated output power from the on-chip transmit amplifier is $-$1.4 dBm. Power consumption is 17.5 mW in receiver mode, and 16 mW in transmit mode, both operating from a 2.5 V supply. In standby, the transceiver supply current is less than 1 $mu{hbox {A}}$.   相似文献   

4.
A novel unequal Wilkinson power divider is presented. A coupled-line section with two shorts is proposed to realize the high characteristic impedance line, which cannot be implemented by conventional microstrip fabrication technique due to fabrication limitation. The proposed coupled-line structure is compatible with single layer integration and can be easily designed based on an even-odd mode analysis. As a design example, a 10:1 Wilkinson power divider at 2 GHz is fabricated and measured. The measured $-10~{rm dB}$ bandwidth of $S_{11}$ is about 16%, and the isolation $S_{32}$ is better than $-20~{rm dB}$ . The measured amplitude balance between output port 2 and port 3 is between $-10.20~{rm dB}$ and $-9.52~{rm dB}$, and the corresponding phase difference is between 0$^{circ}$ and 4.6$^{circ}$.   相似文献   

5.
This paper describes a time-to-digital converter (TDC) with $sim $1.2 ps resolution and $sim $327 $mu$s dynamic range suitable for laser range-finding application for example. The resolution of $sim $1.2 ps is achieved with interpolation based on a cyclic time domain successive approximation (CTDSA) method that resolves the time difference between two non-repetitive signals using binary search. The method utilizes a pair of digital-to-time converters (DTC), the propagation delay difference between which is implemented by digitally controlling the unit load capacitors of their delay cells, thus enabling sub-gate delay timing resolution. The rms single-shot precision, i.e., standard deviation $sigma $-value of the TDC is 3.2 ps, which is achieved by using an external integral nonlinearity look-up table (INL-LUT) for the interpolators. The power consumption is 33 mW at 100 MHz with a 3.3 V operating voltage. The prototypes were fabricated in a 0.35 $mu{hbox {m}}$ CMOS process.   相似文献   

6.
The nonmonotonic behavior of power/ground noise with respect to the transition time $t_{r}$ is investigated for an inductive power distribution network with a decoupling capacitor. The worst case power/ground noise obtained with fast switching characteristics is shown to be significantly inaccurate. An equivalent transition time that corresponds to resonance is presented to accurately estimate the worst case power/ground noise in the time domain. Furthermore, the sensitivity of the ground noise to the decoupling capacitance $C_{d}$ and parasitic inductance $L_{g}$ is evaluated as a function of the transition time. Increasing the decoupling capacitance is shown to efficiently reduce the noise for transition times smaller than twice the $LC$ time constant, $t_{r}leq 2sqrt {L_{g}C_{d}}$. Alternatively, reducing the parasitic inductance $L_{g}$ is shown to be effective for transition times greater than twice the $LC$ time constant, $t_{r}geq 2sqrt {L_{g}C_{d}}$. The peak noise occurs when the transition time is approximately equal to twice the $LC$ time constant, $t_{r}approx 2sqrt {L_{g}C_{d}}$ , referred to as the equivalent transition time for resonance.   相似文献   

7.
We provide the first report of the structural and electrical properties of $hbox{TiN/ZrO}_{2}$/Ti/Al metal–insulator–metal capacitor structures, where the $hbox{ZrO}_{2}$ thin film (7–8 nm) is deposited by ALD using the new zirconium precursor ZrD-04, also known as Bis(methylcyclopentadienyl) methoxymethyl. Measured capacitance–voltage ($C$$V$) and current–voltage ( $I$$V$) characteristics are reported for premetallization rapid thermal annealing (RTP) in $hbox{N}_{2}$ for 60 s at 400 $^{circ}hbox{C}$, 500 $^{circ}hbox{C}$, or 600 $^{ circ}hbox{C}$. For the RTP at 400 $^{circ}hbox{C}$ , we find very low leakage current densities on the order of nanoamperes per square centimeter at a gate voltage of 1 V and low capacitance equivalent thickness values of $sim$ 0.9 nm at a gate voltage of 0 V. The dielectric constant of $ hbox{ZrO}_{2}$ is 31 $pm$ 2 after RTP treatment at 400 $^{circ}hbox{C}$.   相似文献   

8.
We have achieved a 9- $muhbox{m}$-thick AlGaN/GaN high-electron mobility transistor (HEMT) epilayer on silicon using thick buffer layers with reduced dislocation density $(D_{D})$. The crack-free 9- $muhbox{m}$-thick epilayer included 2- $muhbox{m}$ i-GaN and 7- $ muhbox{m}$ buffer. The HEMTs fabricated on these devices showed a maximum drain–current density of 625 mA/mm, transconductance of 190 mS/mm, and a high three-terminal OFF breakdown of 403 V for device dimensions of $L_{g}/W_{g}/L_{rm gd} = hbox{1.5/15/3} muhbox{m}$ . Without using a gate field plate, this is the highest $BV$ reported on an AlGaN/GaN HEMT on silicon for a short $L_{rm gd}$ of 3 $muhbox{m}$. A very high $BV$ of 1813 V across 10- $mu hbox{m}$ ohmic gap was achieved for i-GaN grown on thick buffers. As the thickness of buffer layers increased, the decreased $D_{D}$ of GaN and increased resistance between surface electrode and substrate yielded a high breakdown.   相似文献   

9.
This letter presents the microwave performance of a sub-100 $mu{rm W}$ Ku-band differential-mode resonant tunneling diode (RTD)-based voltage controlled oscillator (VCO) with an extremely low power consumption of 87 $mu{rm W}$ using an InP-based RTD/HBT MMIC technology. In order to achieve the extremely low-power Ku-band RTD VCO, the device size of RTD is scaled down to $0.6times 0.6 mu{rm m}^{2}$. The obtained dc power consumption of 87 $mu{rm W}$ is found to be only 1/18 of the conventional-type MMIC VCOs reported in the Ku-band. The fabricated RTD VCO has a phase noise of $-$100.3 dBc/Hz at 1 MHz offset frequency and a tuning range of 140 MHz with the figure-of-merit (FOM) of $-$194.3 dBc/Hz.   相似文献   

10.
For the first time, internal spacers have been introduced in multichannel CMOSFET (MCFET) structures, featuring a decrease of the intrinsic $CV/I$ delay by 39%. The process steps introduced for this new MCFET technological option are studied and optimized in order to achieve excellent $I_{rm ON}/I_{rm OFF}$ characteristics (NMOS: 2.33 $hbox{mA}/muhbox{m}$ at 27 $hbox{pA}/muhbox{m}$ and PMOS: 1.52 $hbox{mA}/muhbox{m}$ at 38 $hbox{pA}/muhbox{m}$). A gate capacitance $C_{rm gg}$ reduction of 32% is measured, thanks to $S$-parameter extraction. Moreover, a significant improvement of the analogical figure of merit is measured compared with optimized fully depleted silicon-on-insulator planar reference; the voltage gain $A_{rm VI}(= g_{m}/g_{rm ds})$ is improved by 92%.   相似文献   

11.
We report on performance improvement of $n$-type oxide–semiconductor thin-film transistors (TFTs) based on $hbox{TiO}_{x}$ active channels grown at 250 $^{circ}hbox{C}$ by plasma-enhanced atomic layer deposition. TFTs with as-grown $hbox{TiO}_{x}$ films exhibited the saturation mobility $(mu_{rm sat})$ as high as 3.2 $hbox{cm}^{2}/hbox{V}cdothbox{s}$ but suffered from the low on–off ratio $(I_{rm ON}/I_{rm OFF})$ of $hbox{2.0} times hbox{10}^{2}$. $hbox{N}_{2}hbox{O}$ plasma treatment was then attempted to improve $I_{rm ON}/I_{rm OFF}$. Upon treatment, the $hbox{TiO}_{x}$ TFTs exhibited $I_{rm ON}/I_{rm OFF}$ of $hbox{4.7} times hbox{10}^{5}$ and $mu_{rm sat}$ of 1.64 $hbox{cm}^{2}/hbox{V}cdothbox{s}$, showing a much improved performance balance and, thus, demonstrating their potentials for a wide variety of applications such as backplane technology in active-matrix displays and radio-frequency identification tags.   相似文献   

12.
In this paper, we show that Sudoku puzzles can be formulated and solved as a sparse linear system of equations. We begin by showing that the Sudoku ruleset can be expressed as an underdetermined linear system: ${mmb{Ax}}={mmb b}$, where ${mmb A}$ is of size $mtimes n$ and $n>m$. We then prove that the Sudoku solution is the sparsest solution of ${mmb{Ax}}={mmb b}$, which can be obtained by $l_{0}$ norm minimization, i.e. $minlimits_{mmb x}Vert{mmb x}Vert_{0}$ s.t. ${mmb{Ax}}={mmb b}$. Instead of this minimization problem, inspired by the sparse representation literature, we solve the much simpler linear programming problem of minimizing the $l_{1}$ norm of ${mmb x}$, i.e. $minlimits_{mmb x}Vert{mmb x}Vert_{1}$ s.t. ${mmb{Ax}}={mmb b}$, and show numerically that this approach solves representative Sudoku puzzles.   相似文献   

13.
The fluctuation of RF performance (particularly for $f_{T}$ : cutoff frequency) in the transistors fabricated by 90-nm CMOS technology has been investigated. The modeling for $f_{T}$ fluctuation is well fitted with the measurement data within approximately 1% error. Low-$V_{t}$ transistors (fabricated by lower doping concentration in the channel) show higher $f_{T}$ fluctuation than normal transistors. Such a higher $f_{T}$ fluctuation results from $C_{rm gg}$ (total gate capacitance) variation rather than $g_{m}$ variation. More detailed analysis shows that $C_{rm gs} + C_{rm gb}$ (charges in the channel and the bulk) are predominant factors over $C_{rm gd}$ (charges in LDD/halo region) to determine $C_{rm gg}$ fluctuation.   相似文献   

14.
A low-power fully integrated low-noise amplifier (LNA) with an on-chip electrostatic-static discharge (ESD) protection circuit for ultra-wide band (UWB) applications is presented. With the use of a common-gate scheme with a ${rm g}_{rm m}$ -boosted technique, a simple input matching network, low noise figure (NF), and low power consumption can be achieved. Through the combination of an input matching network, an ESD clamp circuit has been designed for the proposed LNA circuit to enhance system robustness. The measured results show that the fabricated LNA can be operated over the full UWB bandwidth of 3.0 to 10.35 GHz. The input return loss $({rm S}_{11})$ and output return loss $({rm S}_{22})$ are less than ${-}8.3$ dB and ${-}9$ dB, respectively. The measured power gain $({rm S}_{21})$ is $11 pm 1.5$ dB, and the measured minimum NF is 3.3 dB at 4 GHz. The dc power dissipation is 7.2 mW from a 1.2 V supply. The chip area, including testing pads, is 1.05 mm$,times,$ 0.73 mm.   相似文献   

15.
Low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs) with high- $kappa$ gate dielectrics and plasma surface treatments are demonstrated for the first time. Significant field-effect mobility $mu_{rm FE}$ improvements of $sim$86.0% and 112.5% are observed for LTPS-TFTs with $hbox{HfO}_{2}$ gate dielectric after $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments, respectively. In addition, the $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments can also reduce surface roughness scattering to enhance the field-effect mobility $mu_{rm FE}$ at high gate bias voltage $V_{G}$, resulting in 217.0% and 219.6% improvements in driving current, respectively. As a result, high-performance LTPS-TFT with low threshold voltage $V_{rm TH} sim hbox{0.33} hbox{V}$, excellent subthreshold swing S.S. $sim$0.156 V/decade, and high field-effect mobility $mu_{rm FE} sim hbox{62.02} hbox{cm}^{2}/hbox{V} cdot hbox{s}$ would be suitable for the application of system-on-panel.   相似文献   

16.
A Fully Integrated 5 GHz Low-Voltage LNA Using Forward Body Bias Technology   总被引:2,自引:0,他引:2  
A fully integrated 5 GHz low-voltage and low-power low noise amplifier (LNA) using forward body bias technology, implemented through a 0.18 $mu{rm m}$ RF CMOS technology, is demonstrated. By employing the current-reused and forward body bias technique, the proposed LNA can operate at a reduced supply voltage and power consumption. The proposed LNA delivers a power gain (S21) of 10.23 dB with a noise figure of 4.1 dB at 5 GHz, while consuming only 0.8 mW dc power with a low supply voltage of 0.6 V. The power consumption figure of merit $(FOM_{1})$ and the tuning-range figure of merit $(FOM_{2})$ are optimal at 12.79 dB/mW and 2.6 ${rm mW}^{-1}$, respectively. The chip area is 0.89 $,times,$0.89 ${rm mm}^{2}$.   相似文献   

17.
Ultra-compact phase shifters are presented. The proposed phase-shifting circuits utilize the lumped element all-pass networks. The transition frequency of the all-pass network, which determines the size of the circuit, is set to be much higher than the operating frequency. This results in a significantly small chip size of the phase shifter. To verify this methodology, 5-bit phase shifters have been fabricated in the $S$ - and $C$ -band. The $S$ -band phase shifter, with a chip size of 1.87 mm $,times,$0.87 mm (1.63 mm $^{2}$), has achieved an insertion loss of ${hbox{6.1 dB}} pm {hbox{0.6 dB}}$ and rms phase-shift error of less than 2.8$^{circ}$ in 10% bandwidth. The $C$ -band phase shifter, with a chip size of 1.72 mm $,times,$0.81 mm (1.37 mm $^{2}$), has demonstrated an insertion loss of 5.7 dB $pm$ 0.8 dB and rms phase-shift error of less than 2.3 $^{circ}$ in 10% bandwidth.   相似文献   

18.
Punchthrough Enhanced Phototransistor Fabricated in Standard CMOS Process   总被引:1,自引:0,他引:1  
A simple lateral structure phototransistor, combined with a normal phototransistor and a punchthrough transistor, has been successfully designed and fabricated in standard commercial CSMC 0.5- $muhbox{m}$ CMOS process. The proposed punchthrough enhancement mechanism provides a high optical gain of close to $hbox{10}^{7}$ for a low-level optical power of $hbox{7.0} times hbox{10}^{-15} hbox{W}$ at a wavelength of 650 nm. Compared with conventional punchthrough phototransistors, a lower dark current of around 1 $muhbox{A}$ is obtained at a 2.0-V operating voltage.   相似文献   

19.
High-electron mobility transistors (HEMTs) based on ultrathin AlN/GaN heterostructures with a 3.5-nm AlN barrier and a 3-nm $hbox{Al}_{2}hbox{O}_{3}$ gate dielectric have been investigated. Owing to the optimized AlN/GaN interface, very high carrier mobility $(sim!!hbox{1400} hbox{cm}^{2}/hbox{V}cdothbox{s})$ and high 2-D electron-gas density $(sim!!kern1pthbox{2.7} times hbox{10}^{13} /hbox{cm}^{2})$ resulted in a record low sheet resistance $(sim !!hbox{165} Omega/hbox{sq})$. The resultant HEMTs showed a maximum dc output current density of $simkern1pt$2.3 A/mm and a peak extrinsic transconductance $g_{m,{rm ext}} sim hbox{480} hbox{mS/mm}$ (corresponding to $g_{m,{rm int}} sim hbox{1} hbox{S/mm}$). An $f_{T}/f_{max}$ of 52/60 GHz was measured on $hbox{0.25} times hbox{60} muhbox{m}^{2}$ gate HEMTs. With further improvements of the ohmic contacts, the gate dielectric, and the lowering of the buffer leakage, the presented results suggest that, by using AlN/GaN heterojunctions, it may be possible to push the performance of nitride HEMTs to current, power, and speed levels that are currently unachievable in AlGaN/GaN technology.   相似文献   

20.
We present a detailed experimental and theoretical study of the ultrahigh repetition rate AO $Q$ -switched ${rm TEM}_{00}$ grazing incidence laser. Up to 2.1 MHz $Q$-switching with ${rm TEM}_{00}$ output of 8.6 W and 2.2 MHz $Q$ -switching with multimode output of 10 W were achieved by using an acousto-optics $Q$ -switched grazing-incidence laser with optimum grazing-incidence angle and cavity configuration. The crystal was 3 at.% neodymium doped Nd:YVO$_{4}$ slab. The pulse duration at 2 MHz repetition rate was about 31 ns. The instabilities of pulse energy at 2 MHz repetition rate were less than ${pm}6.7hbox{%}$ with ${rm TEM}_{00}$ operation and ${pm}3.3hbox{%}$ with multimode operation respectively. The modeling of high repetition rate $Q$-switched operation is presented based on the rate equation, and with the solution of the modeling, higher pump power, smaller section area of laser mode, and larger stimulated emission cross section of the gain medium are beneficial to the $Q$-switched operation with ultrahigh repetition rate, which is in consistent with the experimental results.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号