首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
针对目前大多图像去噪算法的性能依赖输入噪声水平参数的问题,为进一步提高去噪效果,提出一种改进的基于非局部相似和低秩模型的图像盲去噪方法。预先估计图像的全局噪声方差,在图像非局部相似和低秩模型的框架下,自适应地估计各图像块的局部噪声方差,确定各图像块奇异值阈值(SVT)的局部阈值参数,运用迭代规则完成去噪。为验证该方法的有效性,与3种目前较成熟的去噪算法进行仿真对比。仿真结果表明,对于噪声方差未知的图像,该方法的去噪效果在视觉、峰值信噪比(PSNR)和结构相似度(SSIM)的数据上更具优势,具有更好的自适应能力,更适合应用于实际图像去噪问题。  相似文献   

2.
针对传统非局部低秩的图像压缩感知重构算法忽略图像结构特征,导致图像重构效果不理想的问题,提出一种自适应非局部低秩的图像压缩感知重构算法,充分考虑图像自身结构特征和图像块间的强相关性.根据样本块的块结构稀疏度值设置阈值,自适应选取局部搜索窗口大小和相似块的数目;利用新的相似块匹配方法在给定搜索窗口内选取所需要的相似块,按...  相似文献   

3.
为提高非均匀噪声下波达方向(direction of arrival,DOA)角估计算法的估计精度和分辨率,基于低秩矩阵恢复理论,提出了一种二阶统计量域下的加权L1稀疏重构DOA估计算法。该算法基于低秩矩阵恢复方法,引入弹性正则化因子将接收信号协方差矩阵重构问题转换为可获得高效求解的半定规划(semidefinite programming,SDP)问题以重构无噪声协方差矩阵;而后在二阶统计量域下利用稀疏重构加权L1范数实现DOA参数估计。数值仿真表明,与传统MUSIC、L1-SVD及加权L1算法相比,所提算法能显著抑制非均匀噪声影响,具有较好的DOA参数估计性能,且在低信噪比条件下,所提算法具有较高的角度分辨力和估计精度。  相似文献   

4.
针对基于固定变换基的协同稀疏图像压缩感知(CS)重构算法不能充分利用图像自相似特性的问题,提出了一种改进的联合全变差与自适应低秩正则化的压缩感知重构方法。首先,通过图像块匹配法寻找结构相似块,并组成非局部相似块组;然后,以非局部相似块组加权低秩逼近替代协同稀疏表示中的三维小波变换域滤波;最后,结合梯度稀疏与非局部相似块组低秩先验构成重构模型的正则化项,并采用交替方向乘子法求解实现图像重构。实验结果表明,相比协同稀疏压缩感知重构(RCoS)算法,该方法重构图像的峰值信噪比平均可提升约2 dB,所提算法在准确描述图像非局部自相似结构特征的前提下显著提高了重构质量,更好地保留了图像的纹理细节信息。  相似文献   

5.
现今图像成像技术日益普及,但受成像设备、成像环境以及在获取图像过程中外界噪声等因素的相互制约,在实际应用中很多图像成像分辨率较低,带来诸多问题.为此,提出一种有效的基于最大后验概率和非局部低秩先验的图像超分辨重建模型.首先,该模型采用连续图像序列作为数据输入,利用单幅图像内与连续图像间的相似性作为先验知识,提升相似图像块匹配度,消除图像细节丢失现象.然后,以最大后验概率框架建模,使用高斯分布和吉布斯分布拟合模型参数,提升模型泛化能力.通过相似块的奇异值估计待求块的奇异值,采用低秩截断抑制重建过程中引入的噪声.最后,利用图像的非局部自相似性和低秩性质,以非局部低秩约束正则化图像重建过程,添加图像的局部和全局信息来提升重建效果.在标准光流数据集、纽约大学和山东省千佛山医院提供的数据集上的实验结果表明,文中基于最大后验和非局部低秩先验的模型与传统插值算法、基于重建的优秀算法相比,在5组仿真实验中,其平均峰值信噪比提升6.3 dB,在保持图像纹理特征和恢复图像细节方面可取得更好的重建性能.  相似文献   

6.
甘玲  左永强 《计算机应用》2017,37(10):2912-2915
针对快速低秩编码算法存在特征重建误差较大,以及特征间局部约束条件丢失的问题,提出一种强化局部约束的快速低秩编码算法。首先,使用聚类算法对图像中特征进行聚类,得到局部相似特征集合及其对应的聚类中心;其次,在视觉词典中采取K最近邻(KNN)策略查找聚类中心对应的K个视觉单词,并将其组成对应的视觉词典;最后,使用快速低秩编码算法获得局部相似特征集合对应的特征编码。改进算法在Scene-15和Caltech-101图像库上的分类准确率比快速低秩编码算法提高4%到8%,编码效率比稀疏编码算法提高5~6倍。实验结果表明,改进算法使得局部相似特征具有相似编码,从而更加准确地表达图像内容,能有效提高分类准确率及编码效率。  相似文献   

7.
张显  叶军 《计算机科学》2020,47(1):170-175
高光谱图像(Hyperspectral Images,HSI)在采集过程中常受到多种类型的噪声干扰,会直接影响其在后续应用中的精度,因此HSI的去噪是一项十分重要的预处理过程。低秩表示(Low-Rank Representation,LRR)模型能很好地满足HSI的光谱性质,但该框架下字典的选择尤为重要,在当下仍是一个开放性的问题。同时,典型去噪方法仅考虑了图像的局部相关性,已不能满足去噪要求,非局部相似性在图像中也是不可忽略的。基于LRR,文中提出了一种新的HSI去噪算法。首先,综合考虑噪声的类型,选取具有更全面的噪声判别能力的字典;其次,在对图像分块处理的前提下,通过聚类的方式引入非局部相似信息,将相似的图像块联合起来进行低秩表示。在模拟Indian Pines数据集以及EO-1 Hyperion真实数据集上的实验结果均表明,相较于目前主流的HSI去噪方法,无论是在图像的目视效果还是在模拟数据集的定量评价指标下,所提方法均有显著提升。  相似文献   

8.
由于低秩表示(Low-Rank Representation,LRR)模型中核范数对非零奇异值的估计不足,所以利用参数化的非凸惩罚函数来估计非零奇异值,同时结合全变差(Total Variation,TV)范数保持图像边缘信息和加强区域平滑性的能力,通过对LRR模型中的系数矩阵施加TV范数约束,提出了一个新的图像去噪算法,并且采取交替最小化方法求解对应模型。利用图像的内在非局部自相似性先验,所提算法能够在有效发现和移除噪声的同时,增强恢复图像的结构和区域平滑性,提高图像的恢复质量。实验结果表明,与其他去噪算法相比,无论是客观评价还是视觉效果,所提算法都实现了具有竞争力的去噪表现,特别是在噪声强度较大时。  相似文献   

9.
灵敏度编码(Sensitivity encoding, SENSE)是一种应用广泛的并行磁共振成像(Magnetic resonance imaging, MRI)重建模型。目前已有的针对SENSE模型的改进方法的重建图像中依然有较多伪影,尤其在较高加速因子时很难重建出比较清晰的图像。因此,本文基于非局部低秩约束(Nonlocal low-rank, NLR),提出了一种改进的SENSE模型,称为NLR-SENSE。该模型使用加权核范数作为秩代理函数,并使用交替方向乘子法(Alternating direction multiplier method, ADMM)进行求解。仿真实验结果表明,与其他几种并行磁共振成像方法相比,NLR-SENSE方法在视觉比较和3个不同的客观指标上均表现优异,能有效提升重建图像的质量。  相似文献   

10.
医学图像融合是图像处理科研领域的热门课题.针对传统的PET-CT图像融合方法有效地融合了CT图像和PET图像的互补信息,但是在图像整体细节信息保留能力仍然不足,现提出一种基于潜在低秩表示的双模态医学图像融合方法,首先,将医学原图像通过潜在低秩表示方法分解为低秩部分、显著部分以及噪声部分.在低秩部分中,采用加权平均融合规...  相似文献   

11.
医学影像的统计研究表明,组织的边缘信息是医学影像重建最难恢复的一个部分,但现有基于深度学习的重建方法均缺乏对边缘信息的显式考虑.为了在重建时考虑影像的边缘信息,文中提出自监督边缘融合网络,完成MRI影像的压缩感知重建.首先使用边缘检测算子,以无需人工标注的方式生成影像的边缘标记.再提出自监督的辅助网络,将边缘标记以特征学习的方式转换成可融合的特征.设计自顶向下的特征融合机制,将自监督网络学习的特征融入重建网络,实现对影像的压缩感知重建.实验表明,文中网络可较好地捕获影像的边缘信息,重建效果较优.  相似文献   

12.
成像速度是关系磁共振临床应用效能的重要因素,在k空间中降采样,再配合图像重建,可有效加快成像速度.因此,文中考虑降采样方式对磁共振图像重建质量的影响,在训练深度学习网络进行磁共振图像重建的情况下,提出联合优化k空间降采样方式与重建模型的方法.从k空间全采样入手,逐步删除次要的相位编码,直到针对相位编码的采样满足稀疏性要求为止.同时,采样方式的优化是和深度学习图像重建模型参数优化交替进行,即赋予每个相位编码一个权重,通过权重大小确定相位编码的重要性,在优化重建网络参数的同时,完成对k空间降采样方式的优化.实验表明文中方法可提升磁共振图像重建质量.  相似文献   

13.
针对通过脑成像对阿尔茨海默症(AD)进行人工识别存在主观性、易误诊的问题,提出了一种基于核磁共振成像(MRI)图像构建脑网络对AD进行自动识别的方法。首先,把MRI图像叠加并进行结构块划分,并通过计算任意两个结构块之间的结构相似性(SSIM)来构造网络;然后,利用复杂网络理论提取结构参数,并将其作为机器学习算法的输入实现AD的自动识别。分析发现双参数特别是节点介数和边介数作为输入时分类效果最优,进一步研究发现MRI图像划分为27个结构块时分类效果最优,对于加权网络和无权网络的准确率分别最高可达91.04%和94.51%。实验结果表明,基于MRI结构块划分构建的结构相似性复杂网络能够对AD进行准确率更高的识别。  相似文献   

14.
薛俊韬  刘正光  张宏伟 《计算机应用》2006,26(12):2848-2850
提出了递进的基于窄带的多分区C-V方法,并对多幅医学脑部MRI图像进行了分割实验。由于该递进方法分为多个阶段,每阶段只需一个水平集函数,并且在每一阶段应用窄带区域,即只处理窄带区域中的点,从而使计算量大大减少。实验结果证明本算法是有效的,在提高计算速度的同时,可大大改进复杂几何结构的分割效果。  相似文献   

15.
基于压缩感知的自适应正则化磁共振图像重构   总被引:2,自引:0,他引:2  
李青  杨晓梅  李红 《计算机应用》2012,32(2):541-544
当前基于压缩传感理论的正则化磁共振(CS-MR)图像重构算法普遍采用全局正则化参数,不能很好地在保持边缘和平滑噪声方面做出平衡。为此,提出一种自适应的正则化CS-MRI重构算法。结合图像稀疏性和其局部光滑性的先验知识,采用非线性共轭梯度下降算法求取最优化问题,并在迭代过程中自适应地改变局部正则化参数。新的正则化参数可以更好地恢复图像边缘,并且有利于平滑噪声,使代价函数在定义域内具有凸性;同时先验信息包含于正则化参数中,以提高图像的高频成分。实验结果表明该算法能有效权衡恢复图像边缘和平滑噪声两者的关系。  相似文献   

16.
贺建峰  陈勇  易三莉 《计算机应用》2014,34(10):2967-2970
针对各向同性扩散易于造成图像边缘等特征区域的模糊以及相干增强扩散易于在图像背景区域内产生伪条纹的问题,提出了一种根据磁共振成像(MRI)图像莱斯噪声分布特点来对其进行降噪的加权扩散算法。该算法以MRI图像背景区域的莱斯噪声方差作为区分MRI图像背景区域和感兴趣的边缘特征区域二者特征差异的阈值。基于该阈值,该算法构造了一个加权函数,并用该函数对各向同性扩散和相干增强扩散进行加权。加权函数根据图像在不同结构区域的变化,自适应地调整两种扩散的权值,从而充分发挥两种扩散的优势并克服各自的不足。实验结果表明,该算法在峰值信噪比(PSNR)及平均结构相似度(MSSIM)的评价上优于一些经典算法。因此,该算法的降噪及保护、增强边缘的能力更为优越。  相似文献   

17.
许林  胡绍湘 《计算机工程》2012,38(15):225-227
全局自动校准部分并行采集(GRAPPA)算法假设插值核在整个K空间内具有平移不变性,在实际应用中容易引起重建伪影和噪声放大。为此,提出一种基于各向异性扩散的GRAPPA重建算法。利用偏微分方程设计各向异性扩散重建模型,对GRAPPA算法合成后的数据进行各向异性扩散,在保证相位信息正确的情况下,去除K空间中的噪声和奇异点,从而提高重建图像的准确率。对活体实验数据的重建结果表明,该算法能减少噪声和伪影,提高重建图像的信噪比。  相似文献   

18.
卞乐  霍冠英  李庆武 《计算机应用》2016,36(11):3188-3195
针对因噪声干扰多、灰度不均匀、目标边界模糊导致的核磁共振成像(MRI)图像难以精确分割的问题,提出了一种基于Curvelet变换和多目标粒子群(MOPSO)的混合熵MRI图像多阈值分割算法。首先,对待分割MRI图像进行Curvelet分解,提取低频子带和高频细节子带构建概貌-细节灰度级矩阵模型,以提高算法的目标细节表示能力;其次,同时考虑目标与背景的类间差异性与类内均匀性,将提出的二维多阈值倒数熵和倒数灰度熵组合定义为混合熵,作为多目标粒子群算法的目标函数,协同搜索得到最优的分割多阈值,以实现MRI图像的精确分割;最后,为提高算法的求解速度,提出了二维倒数熵和倒数灰度熵多阈值选取的梯度算法。实验结果表明:与二维tsallis熵、自动细菌觅食分割法(ABF)和改进的Otsu多阈值分割算法相比,所提方法对灰度不均和含噪的MRI图像具有更好的适应性,分割结果更为精确。  相似文献   

19.
Digital Image Processing (DIP) is a well-developed field in the biological sciences which involves classification and detection of tumour. In medical science, automatic brain tumor diagnosis is an important phase. Brain tumor detection is performed by Computer-Aided Diagnosis (CAD) systems. The human image creation is greatly achieved by an approach namely medical imaging which is exploited for medical and research purposes. Recently Automatic brain tumor detection from MRI images has become the emerging research area of medical research. Brain tumor diagnosis mainly performed for obtaining exact location, orientation and area of abnormal tissues. Cancer and edema regions inference from brain magnetic resonance imaging (MRI) information is considered to be great challenge due to brain tumors complex structure, blurred borders, besides exterior features like noise. The noise compassion is mainly reduced along with segmentation stability by suggesting efficient hybrid clustering method merged with morphological process for brain cancer segmentation. Combined form of Median Modified Wiener filter (CMMWF) is chiefly deployed for denoising, and morphological operations which in turn eliminate nonbrain tissue, efficiently dropping technique’s sensitivity to noise. The proposed system contains the main phases such as preprocessing, brain tumor extraction and post processing. Image segmentation is greatly achieved by presenting Intuitionist Possibilistic Fuzzy Clustering (IPFC) algorithm. The algorithm’s stability is greatly enhanced by this clustering along with clustering parameters sensitivity reduction. Then, the post processing of images are done through morphological operations along with Hybrid Median filtering (HMF) for attaining exact tumors representations. Additionally, suggested algorithm is substantiated by comparing with other existing segmentation algorithms. The outcomes reveal that suggested algorithm achieves improved outcomes pertaining to accuracy, sensitivity, specificity, and recall.  相似文献   

20.
心脏磁共振图像的分割是心脏功能辅助诊断和分析的基础,而左心室轮廓的提取则是正确分割心脏磁共振图像的关键。提出了一种提取心脏磁共振图像中左心室轮廓的方法。该方法首先采用一种自适应边缘保持平滑算法对心脏磁共振图像作平滑处理,接着采用K均值聚类算法对心脏磁共振图像作聚类分析,然后采用基于变分水平集方法的几何主动轮廓线模型提取左心室轮廓。实验表明,该方法能够克服心脏磁共振图像中的噪声和心脏周边组织的影响,而且具有较好的准确性和鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号