首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of heating on isomerisation and stability of solid β-carotene was investigated, and the products generated by heating were analysed by a number of analytical techniques, including high-performance liquid chromatography (HPLC), UV/VIS-spectroscopy (UV) and gel permeation chromatography (GPC). For the first time, isomerisation of cis- to all-trans-isomer was demonstrated in partly melted solid β-carotene when β-carotene was heated at 90 and 140 °C. Only a few high molecular weight components were detected by GPC when β-carotene was heated in a nitrogen environment. In contrast, more high molecular weight polymers, as well as low molecular fragments, were produced when β-carotene was heated and exposed to air, suggesting that polymerisation was one of the dominant side-reactions of β-carotene change, in addition to degradation.  相似文献   

2.
The effect of high-pressure (HP)-treatment on β-lactoglobulin (β-Lg) was investigated using in-vitro pepsin digestion under simulated gastric conditions. HP-treatment of β-Lg at 400 MPa for 10 min only slightly increased its subsequent hydrolysis by pepsin. However, higher pressure treatments (600 and 800 MPa) resulted in rapid digestion of β-Lg. After these higher pressure treatments, β-Lg disappeared in less than 1 min of pepsin incubation as determined by SDS-PAGE analysis. Mass spectrometry analysis of the digestion products at corresponding incubation times revealed rapid and progressive degradation of β-Lg. Most (> 90%) of the peptide products following pepsin digestion of HP-treated β-Lg were less than 1500 Da in size. Peptide products from pepsin digestion were identified and mapped to β-strand regions (Leu32–Leu54 and Phe82–Leu104) and to the N- and C-terminals regions (Leu1–Leu10 and Ser150–Leu156) of β-Lg. While these regions corresponded to known IgE epitopes of β-Lg, the predominant peptides resulting from 60 s of incubation were short (7–10 residues) in length. These results demonstrate that HP-treatment increased the digestibility of β-Lg and represents a promising processing technology for reducing the allergenicity of known allergens in a wide variety of food materials.Industrial relevanceHigh-pressure treatment is widely used to enhance the functional attributes of food proteins. The potential for enhanced nutritional value of β-Lg was also demonstrated here by its increased digestibility. High-pressure treatment followed by incubation with proteases may represent a method for the commercial production of bioactive peptides such as inhibitors of angiotensin converting enzyme. More importantly, high-pressure-induced unfolding of milk proteins may reduce their allergenicity. Unfolded proteins are less likely to become agents of immunological sensitization because they are more readily hydrolyzed. Thus high-pressure treatment applied to food ingredients such as whey protein isolate may contribute to the development of hypoallergenic foods.  相似文献   

3.
Effect of β-cyclodextrin on the long-term retrogradation of rice starch   总被引:1,自引:0,他引:1  
In this study, the impact of the addition of β-cyclodextrin (β-CD) on long-term retrogradation of rice starch was investigated by texture profile analysis (TPA), differential scanning calorimeter (DSC), and X-ray diffraction (XRD). Results showed that the addition of β-CD presented a crucial role in retarding the long-term retrogradation of starch. The present β-CD also significantly decreased crystallization rate (k), and increased avrami exponent (n). The increase in exponent value indicated that the addition of β-CD transformed the nucleation type due to the formation of amylose–lipid-β-CD complex. Further, the presence of β-CD produced an additional peak 5.2 Å of the gelatinized gel, and retarded crystalline type of the retrograded gel from V- to B-pattern, probably corresponding for the nucleation type transformation.  相似文献   

4.
Effect of enzymatic cross-linking of β-casein on proteolysis by pepsin   总被引:1,自引:0,他引:1  
Food texture has a significant influence on the sensation of satiety. The digestibility of a protein matrix can be decreased by e.g. disulfide cross-links during heating, but the structure and properties of a single protein molecule can also be modified by cross-linking enzymes. In this study the effects of cross-linking of β-casein by fungal Trichoderma reesei tyrosinase (TrTyr) and bacterial Streptoverticillium mobaraense transglutaminase (Tgase) on digestibility by proteolytic pepsin were investigated by different methods. The enzymatic reaction conditions were selected in such a way that high and low molecular mass cross-linked β-casein polymers were formed. SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) was used to analyze the pH stability of the cross-linked β-casein in acidic solution mimicking gastric conditions typically present during proteolytic digestion. In order to monitor the extent of pepsin digestion, the proteolytic process was halted at specific time points and aliquots of the reaction mixtures were subjected to SDS-PAGE, size-exclusion chromatography (SEC) and matrix-assisted laser desorption ionization-time of flight mass spectrometric (MALDI-TOF MS) analyses in order to evaluate sizes and quantities of the digested protein fragments. A pH-stat method was used to determine the degree of hydrolysis (DH) of the enzymatically cross-linked β-casein. The results demonstrated that enzymatically cross-linked β-casein was stable under acidic conditions and was more resistant to pepsin digestion when compared to non cross-linked β-casein. The research results will have high impact on the development of novel food structures with improved properties such as good satiety, controlled energy intake and digestibility.  相似文献   

5.
The presence of residues of antimicrobial substances in milk may have serious toxicological and technical consequences. To date, few studies have been done to evaluate the effect of heat treatments on β-lactam residues in milk. However, the few studies that have been conducted estimate losses of antimicrobial activity under different combinations of temperature and time using microbiological methods. The aims of this study were to calculate the kinetic parameters for the degradation of β-lactam antibiotics in milk and to develop prediction models to estimate the concentration losses of these compounds in conventional dairy heat treatments. To do so, we employed a quantitative HPLC method to calculate losses in concentrations of 10 β-lactam antibiotics in milk with different combinations of temperature and time. Increasing the temperature from 60°C to 100°C decreased the half-life of amoxicillin (372 to 50 min), ampicillin (741 to 26 min), cloxacillin (367 to 46 min), and penicillin G (382 to 43 min). These increases in temperature caused further degradation in cephalosporins, which was accompanied by a decrease in half-life times to reach very low values; for instance, 4, 5, and 6 min for cefoperazone, cephurexime, and cephapirin, respectively. Kinetic equations were applied to different heat treatments used in dairy processing. Heat treatments at high temperatures and long times (e.g., 120°C for 20 min) led to a further degradation of β-lactam antibiotics with percentages close to 100% for cefoperazone and cefuroxime. In contrast, when milk was subjected to heat treatments at lower temperatures and times (e.g., 72°C for 15 s), the degradation of β-lactam in milk did not exceed 1% for the 10 antibiotics tested.  相似文献   

6.
Anna Lante  Federico Zocca 《LWT》2010,43(3):409-414
The usefulness of β-cyclodextrin (β-CD) in enhancing the food and nutritional quality of precooked potatoes was studied. After blanching, potato slices (Solanum tuberosum var. Agata) were cooled. This was followed by dipping in solutions containing β-CD, ascorbic and citric acids, either alone or in combination with β-CD, and vacuum packaging in pouches. The potatoes were pasteurised/precooked and cooled. These samples were then analyzed for colour parameters, microbial count, Resistant Starch (RS) concentration, fat content after a frying test immediately and after 7, 14 and 28 days of storage at 4 °C. Results showed that dipping with β-CD gave the lightest colour (ΔL*) and a more attractive appearance. However, growth of aerobic mesophilic bacteria was observed in samples dipping in solutions with β-CD alone. From the nutritional point of view, the effect of β-CD on the RS content of potatoes may be related to storage time.  相似文献   

7.
Starches isolated from Red, White, Yellow and Black Kidney beans were treated by γ-irradiation doses of 5, 10 and 20 kGy. Physicochemical, morphological and pasting properties of irradiated bean starches were investigated. Microscopic observation under scanning electron microscope (SEM) showed that some of the bean starch granules were destroyed by γ-irradiation and the breakage was greater at a higher dose (20 kGy). Physicochemical properties differed significantly and showed strong dose-dependent relationship. Carboxyl content, solubility, water absorption capacity and transmittance increased, whereas swelling power, apparent amylose content, syneresis and pasting properties decreased upon the irradiation of kidney bean starch. Radiation doses were positively correlated with water absorption capacity and solubility index and negatively correlated with swelling index, peak viscosity, trough viscosity, breakdown and final viscosity. There were high positive correlations between pasting properties. X-ray diffraction pattern remained same upon irradiation but a decrease in crystallinity was observed with increasing irradiation dose.  相似文献   

8.
The effect of adding barley (Hordeum vulgare L.) β-glucan (BBG) to dough on the water redistribution and the thermal properties of dough was studied by TGA and DSC. Combined with LF-NMR to analyse the competition and redistribution mechanism of water at the 1H level. The mass loss of the dough measured by TGA was reduced by an average of 2.11% with BBG added. BBG increased the water retention of the dough, delayed the water loss process. The LF-NMR results showed that at the same water absorption the T21 of the 3% BBG dough was longer while its T22 was shorter than those of the control. BBG has different effects on the different states of water in the dough. BBG increased the free sulfhydryl content in dough during heating, while the adverse effects of BBG on the biopolymer reactions, such as disulfide bond, could be partially relieved by regulating water content.  相似文献   

9.
Effect of oat β-glucan on the fermentation of set-style yogurt was investigated by incorporating 0%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5% of purified oat β-glucan into the yogurt mix. It was found that levels up to 0.3% resulted in yogurts with quality characteristics similar to the control yogurt. Higher levels of β-glucan however retarded the fermentation process with noticeable difference in the characteristics of the yogurt. Examination of the morphologies of yogurt with and without β-glucan revealed that β-glucan formed aggregates with casein micelle and did not form phase-separated domains. This research demonstrated that β-glucan could be added to yogurt up to 0.3%, which meets the nutrient guidelines, to have added nutritional benefits. Practical Application: Yogurt is known for its beneficial effects on human health and nutrition. Yogurt production and consumption is increasing in the United States every year. However, it is lacking in β-glucans, which are recognized for their nutritional importance as functional bioactive ingredients. The main objective was to develop and characterize low-fat yogurts with added β-glucan. This research demonstrated that β-glucan could be added to yogurt up to 0.3%, which meets the nutrient guidelines for added nutritional benefits, without affecting the characteristics of yogurt significantly. This study will benefit the dairy industry by generating new products offering healthy alternatives.  相似文献   

10.
The effect of high-pressure treatment on denaturation of β-lactoglobulin and α-lactalbumin in skimmed milk, whey, and phosphate buffer was studied over a pressure range of 450–700 MPa at 20 °C. The degree of protein denaturation was measured by the loss of reactivity with their specific antibodies using radial immunodiffusion. The denaturation of β-lactoglobulin increased with the increase of pressure and holding time. Denaturation rate constants of β-lactoglobulin were higher when the protein was treated in skimmed milk than in whey, and in both media higher than in buffer, indicating that the stability of the protein depends on the treatment media. α-Lactalbumin is much more baroresistant than β-lactoglobulin as a low level of denaturation was obtained at all treatments assayed. Denaturation of β-lactoglobulin in the three media was found to follow a reaction order of n = 1.5. A linear relationship was obtained between the logarithm of the rate constants and pressure over the pressure range studied. Activation volumes obtained for the protein treated in milk, whey, and buffer were −17.7 ± 0.5, −24.8 ± 0.4, and −18.9 ± 0.8 mL/mol, respectively, which indicate that under pressure, reactions of volume decrease of β-lactoglobulin are favoured. Kinetic parameters obtained in this work allow calculating the pressure-induced denaturation of β-lactoglobulin on the basis of pressure and holding times applied.  相似文献   

11.
Four β-glucan preparations, i.e., curdlan (CL), oat (OG), barley (BG) and yeast (YG) β-glucans, were compared for their effects on the gelatinisation and retrogradation of rice starch (RS). Rapid visco-analysis (RVA) showed that addition of any of these β-glucans significantly increased the peak, breakdown, final, and setback viscosities of RS, whereas the pasting temperatures were significantly decreased by OG or CL addition, but were unaffected by BG or YG addition. Differential scanning calorimetry (DSC) demonstrated that all the β-glucans had a negligible effect on the onset (To), peak (Tp), and conclusion (Tc) temperatures but slightly decreased the gelatinisation enthalpy (△H1) of RS. Storage of all the gels at 4 °C resulted in a marked decrease in the To, Tp, Tc, and melting enthalpy (△H2) values. The retrogradation ratio (△H2/△H1) and the phase transition temperature range (TcTo) of all the gels increased with storage time. Dynamic viscoelastic measurements revealed weak gel-like behaviour of all the gels, in which their storage modulus (G′) increased and their loss tangent (tan δ) decreased during storage. Steady flow tests illustrated time-dependent shear-thinning (thixotropic) behaviour of all the gels. The hysteresis loop area and the gel hardness increased with storage time. However, the rate and extent of retrogradation and the rheological and textural changes of the RS gels were reduced by addition of any of these β-glucans. The extent of the aforementioned effects differed among the different β-glucan preparations, generally in the order OG ≈ BG > CL ≈ YG.  相似文献   

12.
Solutions of 0.5–2 mg/ml β-lactoglobulin (β-LG) at pH 7.0 were treated with underwater high-current discharges (UHCD) using a bench top system constructed in our laboratory. The short time duration of the UHCD (less than 3 μs) and the high energy delivered to the discharge (∼800 J) produced strong shock waves, in a microsecond time scale, as well as a powerful flash of light with a broad spectrum, ranging from soft X-rays to IR. Structural changes in β-LG were evaluated using hydrophobicity fluorescence of the β-LG molecule, differential scanning calorimetry, reactivity of the free thiol group to Ellman's reagent, small angle X-ray scattering (SAXS) and circular dichroism (CD). The results indicated that the application of the UHCD to β-LG leads to the increase of its surface hydrophobicity by approximately 40%. The enthalpy (ΔHUHCD) of UHCD treated samples decreased as much as 40% compared to the enthalpy (ΔHnative) of native untreated proteins, indicating extensive but incomplete unfolding of the protein structure with no aggregation. It was found that no refolding occurred after the UHCD treatment. Also, it was shown that the reactivity of the free thiol group of UHCD treated samples increased 10-fold. Tryptophan residues in β-LG were markedly modified, as observed by UV absorption, indicating a change in its position. CD spectra indicated slight modifications in both secondary and tertiary structure.  相似文献   

13.
14.
Phytosterols are used to lower the blood cholesterol. β-Sitosterol is one of the most important phytosterols with very poor water solubility and bioaccessibility. The main goal of the current research was to investigate the effects of different emulsification variables (i.e. shear, time, pressure and cycle) on the physicochemical properties, release behaviour and encapsulation efficiency of β-sitosterol in water-in-oil-in water (W/O/W) emulsion. Initially, 19 β-sitosterol emulsions were prepared under different experimental conditions (shear 3000 and 6000 rpm; time 2.5 and 5 min; pressure 100, 200 and 300 bar; cycle 1–3). In this study, the β-sitosterol emulsion prepared at 6000 rpm, 5 min, 300 bar and 3 cycles had the smallest average droplet size (139 nm) among all prepared samples. The interaction between shear and time showed the most significant (P < 0.05) effect on the polydispersity index (PDI) and turbidity of the β-sitosterol emulsion. Increasing homogenization pressure and cycle led to improving emulsion stability and encapsulation efficiency. The β-sitosterol emulsion homogenised at 100 bar for 1 cycle had the highest encapsulation efficiency (81.7%) among all samples. The optimization study showed that the emulsification at 300 bar for 3 cycles resulted in the most desirable β-sitosterol emulsion.  相似文献   

15.
The effect of combined treatments of hydrolysis with different proteases, and subsequent polymerization with transglutaminase on the antigenic activity of β-Lg was studied. For the hydrolysis of β-Lg using Alcalase, Neutrase or bromelain, the reaction conditions were 3?% β-Lg and enzyme:substrate 25?U?g?1 of protein, as was defined using factorial study. Under these conditions, the degree of hydrolysis (DH) of the hydrolysates was 12.6?% when obtained with Alcalase and approximately 4?% with Neutrase or bromelain. Post-hydrolysis polymerization did not result in an increase in molecular mass of the protein, but these samples presented a lower DH, determined by trinitrobenzenosulfonic acid (TNBS) method, suggesting that polymerization had occurred. Hydrolysis with the three enzymes reduced the β-Lg antigenicity, as evaluated by ELISA and immunoblotting analyses. The IgE-binding responses were practically null (<9?μg?mL?1), 22.82 and 55.73?μg?mL?1 towards the hydrolysates obtained with Alcalase, bromelain, and Neutrase, respectively. The post-hydrolysis polymerization increased or had no significant effect (P?≥?0.05) on the antigenic response of the hydrolysates.  相似文献   

16.
Almost all published studies of heat-induced β-lactoglobulin self-assembly into amyloid-like fibrils at low pH and low ionic strength have involved heating at 80 °C, and the effect of heating temperature on self-assembly has received little attention. Here we heated β-lactoglobulin at pH 2 and 75 °C, 80 °C, 90 °C, 100 °C, 110 °C or 120 °C and investigated the kinetics of self-assembly (using Thioflavin T fluorescence), the morphology of fibrils, and the rheological properties of fibril dispersions.Self-assembly occurred at all temperatures tested. Thioflavin T fluorescence increased sigmoidally at all temperatures, however it decreased sharply with >3.3 h heating at 110 °C and with >5 h heating at 120 °C. The sharp decreases were attributed partly to local gelation, but destruction of fibrils may have occurred at 120 °C. Thioflavin T fluorescence results indicated that maximal rates of fibril formation increased with increasing temperature, especially above 100 °C, but fibril yield (maximum Thioflavin T fluorescence) was not affected by temperature.At 100 °C and 110 °C, fibrils were slightly shorter than at 80 °C, but otherwise they looked very similar. Fibrils made by heating at 120 °C for 1 h were also similar, but heating at 120 °C for 8 h gave predominantly short fibrils, apparently the products of larger fibrils fragmenting. Heating at 100 °C gave consistently higher viscosity than at 80 °C, and heating for >2 h at 120 °C decreased viscosity, which may have been linked with fibril fragmentation seen in micrographs.  相似文献   

17.
Attenuated total reflection Fourier transform infrared spectroscopy was used to compare the structure of β-lactoglobulin, basil seed gum, and β-lactoglobulin-basil seed gum mixtures, at different states (powder, solution, and gel). The effects of heating and different ratios of β-lactoglobulin-basil seed gum were also investigated to determine their impact on chemical structure and understand their interaction. The results showed that gelification process proved a pronounced effect upon β-lactoglobulin secondary structure, leading to the formation of intermolecular hydrogen-bonding β-sheet structure. These results confirmed that this structure may be necessary for the formation of a gel network. Basil seed gum had a distinct peak at around 1603 cm–1 that relates to –COO–1 stretching of carboxylate salts, probably uronic acids, which approved its anionic structure. The Fourier transform infrared spectroscopy findings strongly suggested that these two polymers are thermodynamic incompatible as amide I peak was increased in the β-lactoglobulin-basil seed gum mixed system and carbon–nitrogen (CN) stretching peak was observed at 2125 cm–1. On the basis of these findings, it was possible to modify the ability of β-lactoglobulin-basil seed gum to form a gel and as a consequence to control the gelling and emulsifying properties.  相似文献   

18.
Storage water activity (aw) affects the stability of freeze-dried food. The sugar crystallization and storage stability of β-carotene in freeze-dried mango powder was investigated following storage under various relative vapor pressures (11.3-80.9%). Sugar crystallization was revealed by the loss of sorbed water in the water sorption experiment. However, the sorption isotherms showed unclear divergence between the experimental and predicted values. X-ray powder diffraction and scanning electron microscopy were used to confirm the crystallization. The results showed that increased aw resulted in higher sugar crystallization. The loss of β-carotene was monitored by high-performance liquid chromatography with a diode-array detector and fitted to a first-order reaction. The rate constant decreased as aw increased up to 0.43, due to the collapse of the mango powder. An increase in the rate constant above this value of aw coincided with pronounced sugar crystallization. Choosing the appropriate value of aw for storage can prevent sugar crystallization and enhance β-carotene stability in freeze-dried fruit powder.  相似文献   

19.
Dietary exposure to advanced glycation end products (AGEs) formed from proteins and reducing sugars is of increasing concern to human health. AGEs may form in protein-based powders containing sugars for instant beverages during drying and storage of the product. Chlorogenic acid, a plant phenol characteristic of coffee, was found to protect against the formation of AGEs at a concentration of 50mM during heating of β-lactoglobulin in the presence of glucose as a reducing sugar in 30% aqueous ethanol at 70°C. Epicatechin, a plant phenol characteristic of green tea, had no similar effect for the equivalent concentration of phenol on the formation of AGEs. Immunochemical detection (ELISA) using polyclonal antibodies raised against AGEs showed a dose-dependent effect of protection by chlorogenic acid on AGE formation and is recommended for routine quality control of sugar containing milk-based powders for instant beverages.  相似文献   

20.
The optimisation of dairy unit operations involving heat transfer requires the control of fouling and aggregation phenomena following the denaturation of thermosensitive proteins, in particular β-lactoglobulin (β-lg). This study intends to give a better view of the influence of whey components (whey proteins, lactose, and minerals such as calcium) on β-lg denaturation through a combined kinetic and thermodynamic approach. β-lg denaturation in model solutions of increasing complexity (pure β-lg solution, whey protein solution, and two model wheys differing in mineral content) was characterised at temperatures ranging from 64.5 to 98 °C by following the evolution of soluble β-lg concentration with HPLC. It was demonstrated that whatever the model solution composition, a two-step mechanism (unfolding followed by aggregation) of 1.5-order kinetics could be adopted to describe β-lg denaturation reaction, as the temperature dependence of the denaturation reaction rate was properly fitted by Arrhenius equation. The dependency of kinetic and thermodynamic parameters on solution composition indicated that the presence of whey proteins enhanced β-lg aggregation, whereas lactose showed a small protective effect against β-lg unfolding. Additionally, minerals, especially calcium, tended to stabilise β-lg native state while increasing β-lg aggregation rates. However, at high mineral content, calcium influence could be hindered or even reversed, presumably owing to a lower bioavailability due to complexation with anions such as inorganic phosphates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号