首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
本研究了不同诱导条件及光发酵罐培养工艺对混养佐夫色绿藻的影响,通过参数优化提高了藻细胞生物量和虾青素积累量.本研究首先系统地比较了在摇瓶系统中不同混合碳源和过氧化氢浓度对佐夫色绿藻的生长和虾青素积累的影响,并在光发酵罐中研究了恒定高光强、低光强-高光强以及低光强-高光强-补加过氧化氢三种不同发酵工艺对佐夫色绿藻积累虾青...  相似文献   

2.
本研究在混养条件下,系统地比较了葡萄糖浓度、氮源种类以及不同碳氮比对色绿藻生物量和虾青素产率的作用规律。目的是在短时间内达到最高生物量同时获得较高含量的虾青素,为建立色绿藻高密度快速扩种和诱导积累虾青素应用技术提供科学依据。研究结果表明:在混养条件下,当葡萄糖浓度一定时,硝酸钠是细胞生长所需的最优氮源,6 d可达到最高生物量浓度9.23 g/L,平均比生长速率为0.24/d,虾青素产量为12.38 mg/L,虾青素占总类胡萝卜素的比例高达46.94%。至于不同碳氮比、葡萄糖浓度对色绿藻生物量和虾青素生产的影响,当葡萄糖浓度为30 g/L、C/N比为34为细胞生长的最优条件,生物量浓度最高为11.28 g/L,平均比生长速率高达0.32/d;虾青素含量显著优于其他组(p0.05),虾青素的产量为21.77 mg/L,虾青素占总类胡萝卜素的比例进一步提高到52.71%。本研究结果对于色绿藻高密度快速生长并积累大量虾青素的放大技术开发具有重要的指导意义。  相似文献   

3.
虾青素具有很强的抗氧化能力,雨生红球藻在目前已知生物中虾青素含量最高。该文采用响应面法研究温度、pH值、NaCl浓度、钨酸钠浓度对雨生红球藻虾青素积累的影响。结果表明,雨生红球藻虾青素积累的最佳工艺条件为温度27℃、pH 9.6、NaCl浓度1.7 g/L、钨酸钠浓度5.2 mmol/L。各因素对雨生红球藻虾青素积累影响的顺序为pH值>温度>钨酸钠浓度>NaCl浓度。  相似文献   

4.
虾青素及其开发   总被引:3,自引:0,他引:3  
虾青素是一种极具潜力的色素和抗氧化剂,具有许多重要的生物学功能,在水产养殖、食 品、医药、化工等行业具有广阔的应用前景。本文对虾青素的性质和功能、虾青素的应用、 生物来源、生产方法以及存在的问题等方面进行了论述。  相似文献   

5.
张睿钦  顾洪玲  管斌  孔青 《中国酿造》2013,32(11):47-50
在单因素试验基础上,选择转化光照强度、转化温度和转化时间为自变量,虾青素含量为响应值,利用Box-Behnken实验和响应面分析法,对转化条件进行优化。结果表明,在温度29.92℃,pH值10,光照7203.95lx的条件下转化10.6d,虾青素含量可达(33.796±1.556)mg/L,与未优化转化条件时相比,提高了0.99倍。  相似文献   

6.
探究雨生红球藻在不同培养条件和规模下积累虾青素的情况,结果表明在缺氮、光强6 000~8 000Lux、装液量100 m L/500 m L三角瓶的条件下虾青素含量可达藻细胞干重的(4.20±0.19)%,质量浓度为(59.23±2.13)mg/L。平板式光照生物反应器中试实验表明,绿色营养阶段在室内和半室外培养时,培养液中的生物量可达到0.88 g/L与1.04 g/L,进入稳定期前生产率分别为0.048 5 g/(L·d)和0.057 1 g/(L·d),红色胁迫阶段在半室外的培养条件下生物量可达到1.17 g/L,藻细胞中虾青素含量为1.49%,单位体积虾青素产量为17.49 mg/L,虾青素生产率为1.05 mg/(L·d)。  相似文献   

7.
酵母菌发酵虾青素研究的进展   总被引:1,自引:0,他引:1  
论文结合作者的虾青素科研成果综述了当前国内外虾青素高产菌株的选育、培养条件的优化和色素提取等技术,并指出了今后大规模商业化生产需要解决的问题。  相似文献   

8.
采用单因素实验对高产虾青素的法夫酵母(Phaffia rhodozymaJMU-MVP14)的培养基及培养条件进行优化,确定最佳培养基组成是:葡萄糖30g/L,酵母膏6g/L,(NH4)2SO41.015g/L(C/N=65),MgSO4·7H2O1g/L,KH2PO413.6g/L(C/P=10),CaCl20.2g/L。最佳培养条件是:初始pH7.0,接种量5%,装液量30mL,培养温度20℃。在此条件下,于7L发酵罐、进行发酵培养,其生物量和虾青素含量分别为13.13g/L和67.07mg/L,与初始培养条件相比分别提高了85.8%和15.8%。  相似文献   

9.
雨生红球藻培养及虾青素累积条件探讨   总被引:5,自引:0,他引:5  
探讨了雨生红球藻(Haematoccuspluvialis)712株的适宜培养条件及藻体诱导累积虾青素的培养基条件。重点研究了温度、pH和光照条件对雨生红球藻营养生长的影响,以及NaNO3、Fe2+盐和乙酸钠浓度对雨生红球藻诱导累积虾青素含量的影响。结果表明:24℃、1000~1500lx连续光照、pH8.0左右的生长条件适合雨生红球藻游动细胞增殖,使平均生长速率达到0.252/d。通过正交试验表明:缺氮培养基对于雨生红球藻细胞累积虾青素最为有利,虾青素含量达到6.72μg/mL,而FeSO4和乙酸钠浓度对虾青素的累积无显著性影响。  相似文献   

10.
酵母菌发酵虾青素研究的进展   总被引:4,自引:0,他引:4  
该文结合作者对虾青素科研成果,综述了当前国内外虾青素高产菌株的选育、培养条件的优化和色素的提取等技术,并指出了今后大规模商业化生产虾青素及其制品所需要解决的问题。  相似文献   

11.
12.
As a potent antioxidant in human diet, astaxanthin (AST) may play important roles in alleviating oxidative stress‐driven adverse physiological effects. This study examined the effects of different stereoisomers of AST in protecting Caenorhabditis elegans from chemically induced oxidative stress. Three stereoisomers of AST investigated herein included 3S,3´S (S) AST, 3R,3´R (R) AST, and a statistical mixture (S: meso: R = 1:2:1) (M) AST. Under paraquat‐induced oxidative conditions, all three types of AST significantly enhanced survival rate of C. elegans. The accumulation levels of ROS in the worms were reduced by 40.12%, 30.05%, and 22.04% by S, R, and M AST, respectively (P < 0.05). Compared with R and M AST, S significantly enhanced the expression levels of SOD‐3. The results of RNA‐Seq analysis demonstrated that AST protected C. elegans from oxidative damage potentially by modulating genes involved in the insulin/insulin‐like growth factor (IGF) signaling (IIS) pathway and the oxidoreductase system. It is noteworthy that different stereoisomers of AST showed different effects on the expression levels of various genes related with oxidative stress. This study revealed important information on the in vivo antioxidative effects of AST stereoisomers, which might provide useful information for better utilization of AST.  相似文献   

13.
本研究以全反式、9-顺式和13-顺式虾青素为研究对象,采用体内外相结合的方法,揭示不同几何构型虾青素的抗氧化作用和对氧化应激损伤的影响。结果表明:在清除1,1-二苯基-2-三硝基苯肼自由基方面,3?种不同几何构型虾青素之间均没有显著差异(P>0.05);在清除2,2’-联氮-双-3-乙基苯并噻唑啉-6-磺酸自由基方面,9-顺式虾青素显著强于13-顺式和全反式虾青素(P<0.05);在氧化自由基吸收能力方面,9-顺式虾青素显著高于13-顺式虾青素(P<0.05),13-顺式虾青素和全反式虾青素之间没有显著差异(P>0.05);在二氯百草枯诱导的氧化应激条件下,3?种几何构型虾青素均能显著提高秀丽隐杆线虫的存活率(P<0.05),但它们之间无显著差异(P>0.05);与对照组相比,9-顺式和全反式虾青素显著降低线虫体内活性氧的积累量(P<0.05),分别下降56.05%和15.07%,9-顺式虾青素处理组与13-顺式虾青素处理组、全反式虾青素处理组均有显著性差异(P<0.05)。因此,3?种几何构型虾青素均具有体外抗氧化作用和对氧化应激损伤的保护作用,9-顺式虾青素的活性优于全反式和13-顺式虾青素。  相似文献   

14.
本文研究了不同光强(120~270μmol/m2·s)和光周期(光/暗:0/24~24/0 h)的光照胁迫对雨生红球藻(Haematococcus pluvialis)虾青素积累、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性、总抗氧化能力(T-AOC)和超氧阴离子自由基(O2-?)清除能力的影响。结果表明,在绿色、褐色和红色细胞期,光强越高,藻细胞虾青素的含量、T-AOC和O2-?清除能力也越高;抗氧化酶(SOD和CAT)活性在绿色细胞期随光强的增加而增加,在红色细胞期则随光强的增加而下降;藻细胞虾青素的含量、T-AOC和O2-?清除能力在红色细胞期最高,而抗氧化酶活性在褐色细胞期最高;藻细胞在不同光周期的270μmol/m2·s的光照下生长10 d时,虾青素的含量、T-AOC和O2-?清除能力随每日光照时间的延长而增高,抗氧化酶活性则先升高后下降。总之,雨生红球藻在270μmol/m2·s的光强下连续光照10 d时虾青素的含量和抗氧化能力最高,这为虾青素作为天然的抗氧化功能食品添加剂的生产和应用提供了新的参考条件。  相似文献   

15.
基于钢架木箱的结构特点和结构力学建立有限元分析模型,采用Abaqus软件分析木箱在静置工况、海洋运输颠簸倾斜30°工况、叉车搬运工况及垂直吊装工况4种工况下的受力和变形情况,并根据有限元计算结果优化设计钢架木箱的钢结构。计算分析结果表明:木箱底部添加并优化钢结构能够有效提高箱体的强度,有限元分析方法能有效提高产品设计的效率和质量。  相似文献   

16.
对不同打浆条件下烟草浆的微观形态进行了分析和研究,结果表明,烟梗浆微观组分呈细长带状,壁薄腔大,且易分丝帚化;烟末浆微观组分粗短,壁薄腔大,杂细胞含量高,表面难分丝帚化,易破碎;烟梗浆组分和烟末浆组分的质均长度、平均粗度和卷曲率随着打浆度的增大而减小,而帚化率、切断率和细小组分率均随着打浆度的增大呈上升的趋势;烟梗浆适宜中度打浆,而烟末浆适宜低度打浆。  相似文献   

17.
为更准确地探讨副溶血性弧菌(Vibrio parahaemolyticus,Vp)菌株在寡营养条件(100%、75%、50%和25%标准TSB+(3% NaCl)占比的培养基稀释液)下的生长异质性对食品安全风险的影响,本实验选取20 株分离自淡水和海水养殖虾中的Vp菌株,通过对其在不同寡营养条件下的生长数据进行拟合,得到20 株不同来源Vp菌株在不同寡营养条件下的一级生长模型,并对二级生长参数进行分析。结果表明:修正Gompertz一级模型对20 株不同来源的Vp菌株在不同寡营养条件下的生长数据拟合良好,拟合相关系数R2为0.791~0.997。不同来源Vp菌株在同种营养浓度下最大比生长速率无显著统计学差异(P>0.05),不同寡营养条件下Vp菌株生长参数不同,与其他研究相比得出初始菌液接种量不同也会造成菌株的生长异质性。综上,不同寡营养条件下Vp菌株有较大的生长异质性,研究这种差异有助于更精准的食品安全风险评估和更科学的食源性致病菌所致疾病防控。  相似文献   

18.
通过建立D-半乳糖致衰老模型,研究虾青素对衰老大鼠肾脏和心脏组织氧化损伤的修复作用。实验设空白组、模型组、虾青素低、中、高(5、10、15 mg/kg)剂量组和二甲双胍(MET)阳性对照组。检测肾脏和心脏系数,肾脏和心脏组织中过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)活力和丙二醛(MDA)含量等指标,观测苏木精-伊红染色(HE)病理组织切片。结果表明,与模型组相比,虾青素能改善D-半乳糖造成的肾脏和心脏系数下降,减少肾脏和心脏组织中MDA含量,并显著提高抗氧化物酶(SOD、CAT、GSH-Px)活力。其中,高剂量组(15 mg/kg)大鼠肾脏和心脏中MDA含量显著降低了70.48%和38.02%(p<0.01),对于SOD、CAT和GSH-Px活力,肾脏中分别提高了37.22%、43.73%和52.01%(p<0.01),心脏中分别提高了85.47%、52.08%和64.77%(p<0.01)。病理切片显示虾青素能有效缓解肾脏和心脏组织的氧化损伤。以上结果全面揭示虾青素能通过减轻氧化应激来抑制衰老大鼠肾脏和心脏组织的损伤,其机制可能与抗氧化有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号