首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
砂砾土液化的剪切波速判别方法   总被引:2,自引:0,他引:2  
 剪切波速也正逐步成为土层液化判别的基本指标之一,但采用现场波速资料得到的砂砾土液化判别方法尚较少见。针对2008年汶川8.0级地震显著的砂砾土液化现象,获取45个场地剪切波速结构,以此提出基于剪切波速的砂砾土液化判别方法;构建相应模型和计算公式,并分析现有2种典型砂土液化剪切波速判别方法对砂砾土的适用性。提出的砂砾土液化剪切波速判别方法由初判和复判组成,初判包括地质年代、埋藏条件和含砾量3个条件;复判模型则由地震烈度、剪切波速基准值、地下水位、砂砾土埋深和和含砾量等5个参数构成,并分别采用归一化方法和优化方法推导出剪切波速基准值以及地下水位和砂砾土埋深的影响系数。砂砾土与砂土属不同土类,相同波速值下二者密实程度不同,现有砂土液化剪切波速判别方法对砂砾土不适用,给出的判别结果明显偏于危险。获取的砂砾土液化资料扩充现有液化数据库内容,提出的砂砾土液化剪切波速判别方法简单明了,回判成功率高,可为工程应用及规范修订提供参考。  相似文献   

2.
以新疆巴楚—伽师 Ms6.8 级地震液化现场勘察和测试为基础,获取了 47 个场地的标准贯入试验资料,分析了现有基于标准贯入的砂土液化判别方法的适用性,提出了新的砂土液化判别公式。分析表明国内外现有基于标准贯入击数的砂土液化判别公式不适用于新疆地区,中国现有规范对此次巴楚地震非液化点判别成功率 88% ,但对液化场地判别成功率仅为 38% ,会给出明显偏于危险的结果。以新调查数据建立的砂土液化判别模型由地震烈度、实测标准贯入击数、标准贯入击数基准值、地下水位、砂土埋深等 5 个参数构成,其中标准贯入击数基准值以及地下水位和砂土埋深的影响系数分别采用归一化方法和本文提出的优化方法给出。与中国现有规范相比,新疆巴楚液化土层有所增加,推导出的标准贯入击数基准值远小于现有规范,表明巴楚地区抗液化能力显著低于以往形成我国规范时调查的可液化场地,深层土和低水位砂层液化可能性更大。所建立的砂土液化判别新公式,液化回判成功率为 91% ,非液化回判成功率为 85% ,表明构建的模型合理,计算公式可靠,同时新公式延续了中国现有规范的基本形式,工程使用方便,可为新疆地区区域性规范制订提供参考。  相似文献   

3.
关于改进中国规范中土液化判别准则的建议   总被引:1,自引:0,他引:1  
基于BP网络的人工神经元模型和可靠度理论,建立极限状态的抗液化阻力比函数和液化概率函数。沿用原抗震规范中液化标准贯入锤击数基准值概念,建立了简化的液化判别概率方法。该法以液化标准贯入锤击数作为估计液化势的基本依据。基准值是给定地面加速度、土层埋深、地下水位的液化临界锤数,也与震级大小和液化概率有关。为了对不同震级和土层中任一点进行液化判别,引入土层埋深水位以及震级大小对基准值的修正系数。为了方便工程应用,也给出了按地震分组的液化判别方法。  相似文献   

4.
以2008年汶川地震液化震害调查资料为背景,基于操作性和经济性上具有显著优势的中国动力触探试验(DPT)而提出的砾性土液化评价方法,包括砾性土层液化触发条件以及判别公式(CYY公式),理论上已经得到国内外同行的认可,但其通用性和可靠性尚需检验。以5个国家29个历史地震砾性土场地中美联合勘测为基础,研究DPT技术、砾性土层液化触发条件和CYY公式在不同国家、不同地震和不同场地的适用性和可靠性问题,其中,成都平原14个砾性土场地的勘测与数据处理由中方完成,美国、意大利、新西兰、厄瓜多尔等15个砾性土场地的勘测与数据处理由美方Rollins教授主导完成,均为新的测试检验点。结果表明:中国动力触探标准探头在不同国家、不同砾性土场地上测试具有可行性,可以有效穿透20 m的砾性土场地,动探击数可作为砾性土液化评价的核心指标,同时亦可扩展到砾性土层的力学性能评价;不同国家、不同砾性土液化场地上,均存在不排水或排水不畅的埋藏条件,符合砾性土层液化触发条件要求;对动力触探击数进行锤击能量、有效上覆压力等修正后,CYY公式在不同国家、不同地震、不同砾性土液化场地的判别成功率约96%,具有较高可靠性。以2008年汶川地震砾性土液化为背景、以动力触探锤击数为基本指标的砾性土液化评价方法,具有国际通用的可行性。  相似文献   

5.
液化判别的双曲线模型   总被引:1,自引:0,他引:1  
孙锐  赵倩玉  袁晓铭 《岩土工程学报》2014,36(11):2061-2068
基于国内外液化判别方法存在的问题,提出了一个双曲线形式的液化判别新模型。采用中国大陆以往156例液化数据完成了基于标准贯入试验的新公式构造,利用近来集集和阪神地震312例液化新数据进行了检验,并与现有规范方法和Seed方法进行了对比,结果表明:提出的双曲线模型和液化判别公式对不同地震烈度、地下水位和砂层埋深均有较好的适用性;新模型弥补了现有规范Ⅶ度下浅层液化(砂层埋深小于10 m)判别偏于危险的缺欠,对Ⅷ度和Ⅸ度下浅层土液化和非液化场地的成功率比现有规范表现得更为均衡;新模型可满足临界曲线浅层内快速变化、深层时明显变缓的客观实际要求,克服了规范Ⅷ度、Ⅸ度下深层土(砂层埋深10~20 m)判别严重保守的弊端;新模型具有渐近线形式,更符合实际情况,消除了Seed方法中标准贯入临界值随土层埋深增加先递增后递减的不正常现象。  相似文献   

6.
工程场地地震安全性评价和地震小区划工作在我国日益普及,对适于工程使用的土层液化发生概率计算方法的需求日趋强烈。该文沿用我国建筑抗震设计规范液化判别模式并使用同样基础数据,以地下水位、埋深、标准贯入击数等土层常规指标为直接变量,采用较为成熟的二分类Logistic回归分析理论,构造砂土液化概率计算公式和不同概率水平下液化临界值计算公式,通过回归分析和近期地震液化调查新数据分项检验其合理性和可行性。构造公式时采用我国大陆以往159例液化数据,检验公式时采用近期地震液化调查358例新数据,来源于1995年阪神地震和1999年集集地震。以上述两方面数据,检验概率50%的该文公式与现有建筑抗震设计规范确定性方法,结果表明:二者对国内大陆液化资料回判成功率基本相当,但该文公式略为保守;就阪神和集集地震新数据,该文公式不同砂层埋深检验结果均可接受,而现有规范砂层埋深下小于10m结果可以接受,大于10m时显著保守,方法需要改进。以上述两方面数据检验该文公式不同液化概率水平下的表现,结果表明:不同液化概率下的该文公式不仅定性上符合现有认识,而且非液化和液化概率水平相同时,对大陆非液化和液化场地回判成功率基本相当,对阪神和集集地震液化与非液化场地判别成功率基本相当,不同埋深下液化与非液化场地判别成功率大体一致。两方面数据检验表明,该文公式对不同液化概率水平、各种地震强度、地下水位和砂层埋深均有较好的适用性。  相似文献   

7.
简化的液化判别概率法   总被引:1,自引:1,他引:0  
在本文中,液化极限状态函数和液化概率函数分别来自ANN模型分析和可靠度计算.根据这两个函数和Seed的地震应力公式,作者提出简化的液化判别概率公式N=αβN0.N是临界液化锤击数;N0是给定震级、加速度、概率水平、土层埋深和水位的标准贯入锤击数基准值;α为土层埋深水位修正系数,是埋深的非线性函数;β为基准值震级修正系数.该式简单实用,可用于液化风险决策.  相似文献   

8.
本文通过对《建筑抗震设计规范》中地震液化判别公式的深入分析和理解,利用极值原理和思想,提出了工程场地标贯击数理论最大临界值的概念,利用理论最大临界值,对饱和土进行了液化初判。对于饱和砂土,现场即可判别是否液化,对于饱和粉土,现场可进行是否液化的筛选,从而减少了现场采取扰动土样的数量,减少了测定黏粒含量的土工试验量,提高了岩土工程勘察效率,具有一定的理论价值和实用意义。  相似文献   

9.
地震灾害中砂土液化易引起地面不均匀沉降,造成建(构)筑物破坏,引起安全问题。本文针对砂土液化问题,分析了砂土液化机理及砂土液化影响因素,介绍了三种基于标准贯入击数的饱和砂土液化判别方法。针对三种判别方法分析砂土埋深、地下水位和抗震设防烈度对临界标贯锤击数的影响,从临界标贯锤击数和液化指数方面探讨了三种液化判别方法的异同点。结合工程案例,说明不同判别方法对场地液化判别结果不一致,从而导致采用不同的抗液化措施,引起工程造价改变。  相似文献   

10.
近来数次大地震中出现大量的砂砾土液化震害,饱和砂砾土的地震液化问题越来越引起重视。针对砂砾土的抗液化强度问题,开展了4种砾含量、3种相对密度情况下,饱和砂砾土的小型土箱振动台试验研究。为获得较为合理的抗液化强度结果修正了由加速度计倾斜产生的加速度时程漂移,并描述了土体中加速度和动孔压发展特性。饱和砂砾土的抗液化强度结果显示:含砾量和相对密度对饱和砂砾土的抗液化强度均有明显影响。饱和砂砾土的抗液化强度随着含砾量和相对密度的增加明显增大,增大的趋势越来越明显,且明显高于相近相对密度的饱和砂土的抗液化强度。  相似文献   

11.
2008 年 5 月 12 日中国发生的 8.0 级汶川大地震中, 位于 Ⅶ 、 Ⅷ 度交接处的德阳松柏村液化破坏十分明显, 喷砂类型丰富,液化伴随大量地裂缝,液化加震现象十分显著 , 具有典型研究价值。对该村进行了详细的现场测试并 与以往液化震害进行了对比分析,结果表明: 尽管松柏村地表主要喷出物是中砂和粗砂,但实际液化土与喷出物差别显著,主要为砂砾土液化;以往还没有提出过适于工程应用的砂砾土液化判别方法,而超重型动力触探( DPT )具有设备简单、经济实用、测试数据连续的优点,可作为砂砾土液化预测的核心指标; 松柏村大量地裂缝现象不是由次断层造成而是由土层液化引起,而液化产生地裂缝的基本条件为地表较平坦( <3% )以及液化土层水平分布不均匀; 液化减震的基本条件为上覆非液化层足够厚且较为密实,但定量评价方法还有待进一步研究。  相似文献   

12.
砂土液化是地震主要次生地质灾害之一,其是否发生及液化程度如何与地层结构、地下水、土层类型及特征等工程地质条件密切相关,通常饱和砂土和饱和粉土容易发生液化。5.12汶川地震中,在以砾石为主要地层的德阳等地发生了严重的砂土液化现象,这在以往地震中少见。胜利—果园村液化带是德阳地区诸多典型液化带之一,通过现场钻探和试验表明:液化带主要土层为砾石和粘土,发生液化的土层为全新统砾石层;液化砾石层结构松散,颗粒大小分布曲线较平缓,平均粒径和不均匀系数较大,曲率系数较小;地面喷出物是粗砂,其颗粒组成与液化砾石层相差很大。  相似文献   

13.
基于动力触探的砾性土液化判别方法通用性研究   总被引:2,自引:0,他引:2  
动力触探是针对砾性土力学性能评价的一种原位测试技术,具有设备简单、操作方便等优势。分别在成都平原和美国Utah地区选取典型砾性土场地,进行中美联合动力触探和有效锤击能量的测试与标定,结果表明:1在成都平原3个砾性土场地获取了中国超重型动力触探1321个重锤锤击能量记录,锤击能量传递系数的平均值约为90%,标准差为7.7%,锤击数离散性受设备操作方法的影响较大;2在美国钻机上安装中国超重型动力触探标准探头,可以有效穿透选取的试验深度为20 m的砾性土场地,并进行分层、力学性能评价;3在美国Echo dam下游坝基上2个砾性土场地获取了美国动力触探1438个重锤锤击记录,锤击能量传递系数约为74%,标准差为8.7%,锤击数离散性受拉绳、钻杆摩擦力的影响较大;4对锤击数进行能量修正之后,以2008年汶川地震砾性土液化为背景、以动力触探锤击数为基本指标的砾性土液化判别方法,具有国际通用的可行性。  相似文献   

14.
天然沉积砾性土场地液化是一个超出现有认识与现有规范的新问题,其触发条件至关重要,从震害现场调查提炼出相关认识最为可靠,是后续研究的基础和导引。鉴于2008年汶川地震砾性土液化规模远超以往,以其调查结果为主,综合历史砾性土液化全部资料,提出砾性土层液化的触发条件。现有资料分析表明:0.15g应为触发天然沉积砾性土层液化的地表最低地震强度,大规模砾性土层液化发生则需要0.2g~0.4g(Ⅷ度区)的地震强度;松散和接近松散状态是天然砾性土层液化的基本条件,液化砾性土密实度可随地震强度增大而增高但仍以稍密状态为上限;液化砾性土含砾量可达85%及更大,并且不随地震强度减弱而降低;高剪切波速天然砾性土层会发生液化,砾性土与砂土密实程度的剪切波速分界线相差悬殊,砂土液化判别公式不适于砾性土层;上覆渗透性差非液化土层(帽子)的存在是地下砾性土层可发生液化的必要条件,可称为帽子效应,此厚度至少应为0.5 m;地下水位与帽子间不能有过厚的可排水层间隙也是下卧砾性土层可发生液化的必要条件,可称为间隙效应,此间隙上限可取为2.0 m;区别于砂土液化判别方法,砾性土液化判别需要埋藏条件方面的特殊要求,否则容易出现误判。  相似文献   

15.
砂土在地震力的作用下变形及稳定与其物理力学性质和结构组成密切相关,且地震对地下结构的破坏,是随其埋深的增加而减轻的,对铁路路基工程而言,在路基本体及周围特定的地质环境条件以及运营过程中列车振动及冲击力的反复作用下,部分改变了原地基的物理力学性质,地基土抗震液化强度也随之改变,使问题变得更为复杂。因此,依据铁路路基工程的实际情况,进行砂土物理力学性质及抗液化强度试验,划分液化区与非液化区对路基工程的设计及加固是十分必要的。  相似文献   

16.
《Soils and Foundations》2012,52(5):793-810
The 2011 Great East Japan Earthquake caused the severe liquefaction of reclaimed lands in the Tokyo Bay area, from Shinkiba in Tokyo through Urayasu, Ichikawa and Narashino Cities to Chiba City. However, the reclaimed lands that had been improved by the sand compaction pile method, the gravel drain method or other methods did not liquefy. The reclaimed lands that did liquefy had been constructed after around 1966 with soil dredged from the bottom of the bay. The dredged and filled soils were estimated to have been liquefied by the earthquake. Seismic intensities in the liquefied zones were not high, although the liquefied grounds were covered with boiled sand. Most likely it was the very long duration of the main shock, along with the large aftershock that hit 29 min later, which induced the severe liquefaction. Sidewalks and alleys buckled at several sites, probably due to a kind of sloshing around of the liquefied ground. Moreover, much sand boiled from the ground and the ground subsided significantly because the liquefied soil was very fine. Many houses settled notably and tilted. In Urayasu City, 3680 houses were more than partially destroyed. Sewage pipes meandered or were broken, their joints were extruded from the ground, and many manholes were horizontally sheared. This remarkable damage may also have occurred due to the sloshing around of the liquefied ground.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号