共查询到19条相似文献,搜索用时 125 毫秒
1.
2.
基于多目标进化算法的手机概念设计优化 总被引:1,自引:0,他引:1
针对手机设计领域应用计算机辅助设计存在的一些问题,以及如何处理相互冲突的多目标间的优化问题,深入地分析了概念设计过程中的创新思维和多目标优化的基本理论.在手机概念设计阶段同时考虑了用户要求.构件设计属性.设计成本和综合评价值等多种因素,将分布估计算法应该于求解手机集成的多目标优化问题,给出了具体的方法和步骤.实验结果表明,该方法可以提高设计的创新性,给设计人员提供有益的借鉴. 相似文献
3.
利用SFE Concept建立某轿车白车身的参数化模型,采用有限元法对白车身的静态弯曲和扭转刚度、主要低阶模态进行分析,并将仿真结果与试验结果进行对比。将参数化白车身与动力总成、底盘、闭合件连接后,仿真分析整车正面100%碰撞安全性能并验证有限元模型的有效性。提出通过相对灵敏度分析确定白车身非安全件设计变量的方法,采用最优拉丁超立方方法生成样本点,基于径向基神经网络方法拟合近似模型,以白车身非安全件和正碰安全件为轻量化对象,通过第二代非劣排序遗传算法对白车身进行多目标优化设计。结果表明:在白车身静态弯曲刚度降低3.60%、静态扭转刚度降低3.91%、一阶弯曲模态固有频率降低0.09%、一阶扭转模态固有频率上升1.26%、正碰安全性能基本不变的情况下,白车身质量减少24.17 kg,减重7.42%,轻量化效果显著。 相似文献
4.
胡翩 《计算机与数字工程》2014,(3):390-394
船舶概念设计阶段,需要初步给定多组船型参数方案并从中优选出客观合理的某一方案.以散货船为研究对象,建立了以船舶造价、单位排水量船体阻力、相对回转直径为目标的船舶概念设计优化数学模型;应用改进的非支配解排序的多目标进化算法求解船舶概念设计多目标问题以获得Pareto解集.分析了主观赋权和客观赋权的优劣,提出采用线性叠加在层次分析法、变异系数法这两种主观赋权和客观赋权方法间求取组合赋权向量,将组合向量与TOPSIS法结合对所求Pareto解集进行方案排序.优化决策结果表明,改进的非支配解排序的多目标进化算法DW=36000t散货船概念设计优化能获得多组综合性能优良的船型方案,基于线性叠加的组合赋权TOPSIS决策策略能给出客观、有效的方案序列.这种二阶段的综合方法也能推广应用于船舶优化与决策其他领域. 相似文献
5.
在任意给定折叠桌高度和圆形桌面直径时,为满足产品稳固性好、加工方便、节省用料的设计要求,通过建立多目标优化模型对创意平板折叠桌进行优化设计,利用线性加权法确定折叠桌的平板尺寸、钢筋位置、开槽长度等最优设计参数。 相似文献
6.
为克服传统遗传算法退化和早熟等缺点,同时降低优化算法的复杂度,提出基于人工免疫系统(Artificial Immune System, AIS)实现无约束多目标函数的优化。使用随机权重法和自适应权重法计算种群个体的适应值,使Pareto最优解均匀分布的同时,加快算法的收敛;通过引入人工免疫系统的三个基本算子:克隆、超变异和消亡,保持种群的多样性;在进化种群外设立Pareto 解集,保存历代的近似最优解。使用了两个典型的多目标检测函数验证了该算法的有效性。优化结果表明,基于AIS的多目标优化算法可使进化种群迅速收敛到Pareto前沿,并能均匀分布,是实现多目标函数优化的有效方法。 相似文献
7.
催化裂化分离系统由分馏系统和吸收稳定系统两部分组成,本文将催化裂化分离系统作为一个整体进行研究。应用流程模拟软件Aspen Plus建立了该系统的全流程模拟,在此基础上,以干气中C_(3+)组分数最小和系统能耗最少作为优化目标,建立了该系统的多目标优化数学模型。应用模糊优化理论对优化约束条件进行模糊处理,并采用多目标列队竞争算法(MOLCA)对模糊优化模型以及普通优化模型进行求解。计算结果表明,采用模糊优化的结果优于普通优化的结果,干气品质和系统能耗都得到了明显的改善。为催化裂化分离系统的操作优化提供了参考。 相似文献
8.
提出了基于信念的多Agent模型解决多目标优化问题.在这个模型中,Agent通过在解空间中移动来进行搜索,使用信念指导移动.每个Agent都有独立的信念,信念由3部分组成:Agent对每个目标的偏好、移动向量和对此向量的评价.Agent在优化的过程中会根据目标函数的值调整移动向量和对应的评价.Agent也会和相邻的Agent交互信念,从而获得更好的性能.最后用模型解决了几个简单的多目标函数优化问题,实验结果证明了算法的有效性. 相似文献
9.
将多目标优化软件modeFRONTIER同化工流程模拟软件PRO/Ⅱ相结合,模拟催化吸收稳定系统,并采用遗传算法多目标优化产品质量和能耗。优化结果表明干气与冷、热负荷都存在较明显的Pareto关系,根据Pareto解集可得出优化点,优化后干气质量提高了12.8%,冷、热负荷分别降低了4.4%和4.92%。这为优化催化吸收稳定系统的设计和实际操作提供了依据。 相似文献
10.
针对差分进化算法(Differential Evolution Algorithm,DE)求解多目标优化问题时易陷入局部最优的问题,设计了一种双向搜索机制,它通过对相反进化方向产生的两个子代个体进行评价,来增强DE算法的局部搜索能力;设计了多种群机制,它可令各子群独立进化一定次数再执行全局进化,以完成子群间进化信息的交流,这一方面降低了算法陷入局部最优的风险,另一方面增强了Pareto解集的多样性,使Pareto前沿面的解集分布更为均匀。实验结果表明,相比于NSGA-II等同类算法,所提方法在搜索Pareto最优解时效率更高,并且Pareto最优解集的精度及分布程度比前者更好。 相似文献
11.
Fragment‐type structures have been used to acquire high isolation in compact multiple‐input and multiple‐output (MIMO) systems. In this paper, two novel optimization strategies, boundary‐based two‐dimensional (2D) median filtering operator and boundary‐based 2D weighted sum filtering operator, are proposed to design fragment‐type isolation structures first when specific boundary conditions are considered in engineering designs. Second, two computer aided optimization techniques are proposed through combining these two operators with MOEA/D‐GO (multi‐objective evolutionary algorithm based on decomposition combined with enhanced genetic operators), respectively. Finally, fragment‐type isolation structures of a compact MIMO PIFAs (planar inverted‐F antennas) system operating at 2.345‐2.36 GHz are designed. Comparison results show that more alternative designs could be found at the expense of searching speed, and both better front‐back‐ratio and wider impedance bandwidth are observed. 相似文献
12.
In this paper, we introduce MRMOGA (Multiple Resolution Multi‐Objective Genetic Algorithm), a new parallel multi‐objective evolutionary algorithm which is based on an injection island approach. This approach is characterized by adopting an encoding of solutions which uses a different resolution for each island. This approach allows us to divide the decision variable space into well‐defined overlapped regions to achieve an efficient use of multiple processors. Also, this approach guarantees that the processors only generate solutions within their assigned region. In order to assess the performance of our proposed approach, we compare it to a parallel version of an algorithm that is representative of the state‐of‐the‐art in the area, using standard test functions and performance measures reported in the specialized literature. Our results indicate that our proposed approach is a viable alternative to solve multi‐objective optimization problems in parallel, particularly when dealing with large search spaces. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
13.
L. Costa L. Fernandes I. Figueiredo J. Júdice R. Leal P. Oliveira 《Structural and Multidisciplinary Optimization》2004,27(1-2):55-65
In this paper an application of a genetic algorithm to a material- and sizing-optimization problem of a plate is described. This approach has obvious advantages: it does not require any derivative information and it does not impose any restriction, in terms of convexity, on the solution space. The plate optimization problem is firstly formulated as a constrained mixed-integer programming problem with a single objective function. An alternative multiobjective formulation of the problem in which some constraints are included as additional objectives is also presented. Some numerical results are included that show the appropriateness of the algorithm and of the mathematical model for the solution of this optimization problem, as well as the superiority of the multiobjective approach. 相似文献
14.
15.
布图规划在超大规模集成电路(VLSI)物理设计过程中具有重要作用,它是一个多目标组合优化问题且被证明是一个NP问题。为了有效解决布图规划问题,本文提出一个多目标粒子群优化(PSO)算法。该算法采用序列对表示法对粒子进行编码,根据遗传算法交叉算子的思想对粒子更新公式进行了修改;引入Pareto最优解的概念和精英保留策略,并设计了一个基于表现型共享的适应值函数以维护种群的多样性。仿真实验通过对MCNC标准问题的测试表明了本文算法是可行且有效的。 相似文献
16.
El‐Ghazali Talbi Matthieu Basseur Antonio J. Nebro Enrique Alba 《International Transactions in Operational Research》2012,19(1-2):283-305
In recent years, the application of metaheuristic techniques to solve multi‐objective optimization problems has become an active research area. Solving this kind of problems involves obtaining a set of Pareto‐optimal solutions in such a way that the corresponding Pareto front fulfils the requirements of convergence to the true Pareto front and uniform diversity. Most of the studies on metaheuristics for multi‐objective optimization are focused on Evolutionary Algorithms, and some of the state‐of‐the‐art techniques belong this class of algorithms. Our goal in this paper is to study open research lines related to metaheuristics but focusing on less explored areas to provide new perspectives to those researchers interested in multi‐objective optimization. In particular, we focus on non‐evolutionary metaheuristics, hybrid multi‐objective metaheuristics, parallel multi‐objective optimization and multi‐objective optimization under uncertainty. We analyze these issues and discuss open research lines. 相似文献
17.
为了有效解决电液伺服系统主从控制结构中主缸和从缸PID控制器的参数设定问题,提出了一种基于多目标优化算法与模型仿真相结合的求解方法。在该求解方法中,将参数设定问题建模为了一个多目标优化问题,其目标空间包括主从同步误差、调节时间、超调量和积分平方误差四个维度,建立了主从结构的PID控制仿真模型,来获取目标空间的目标值。改进了MOEAD算法,通过亲代选择以及子代生成算子选择强化算法子代的多样性,通过个体与权重向量的绑定机制和外部种群对无效权重向量的替换策略对原始算法中的权重向量进行重调整。由改进的MOEAD算法获取了最终的Pareto非支配解集,在最终解集中选取了拐点个体作为控制器的最优参数,提高了主从同步结构的控制品质。 相似文献
18.
为满足某炮尾结构布置的特殊需要,在输弹槽贯穿托弹板的开放式炮尾结构基础上,重新设计传力结构;采用基于响应面法(Response Surface Method,RSM)的多目标遗传算法NSGA-II寻找齿形传力结构的最优参数,通过编写Python脚本控制Abaqus内核实现自动前处理,对其进行有限元分析,并基于iSight实现多目标三维模型设计优化.该方法摒弃传统的二维优化三维验证的理念,将多目标遗传算法与RSM结合起来,在iSight中直接进行三维模型设计优化,可节省计算时间、提高计算效率、改善设计水平. 相似文献
19.
Karzan Wakil Arshad Badfar Pooyan Dehghani Seyed Mojtaba Shoja Sadati Nima Jafari Navimipour 《Concurrency and Computation》2019,31(17)
Cloud computing as a new model of delivering IT services on the Internet has attained high attention recently. In this new paradigm, efficient service management causes the high quality of provided services. Scheduling as one of the most important duties of service management is a key problem in cloud computing that affects the total system performance. In most cases, the meta‐heuristic methods are used for optimizing the scheduling issues instead of traditional methods. One of the influential evolutionary algorithms for optimizing the complicated problems is a non‐dominated sorting particle swarm optimization (NSPSO) technique. In this paper, we propose a meta‐heuristic technique using the NSPSO model for decreasing total cost and consumed total time. Furthermore, fuzzy set theory is applied to select the best solution. Simulation results have indicated that the efficiency of NSPSO is improved. In the many types of experiment, the proposed NSPSO algorithm was appropriate to keep a good spread of solutions and good converge. In addition, the diversity preserving mechanism applied in NSPSO has improvement against the other two investigated algorithms. 相似文献