首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analyses of water samples collected from the Mississippi River at Baton Rouge, Louisiana, during 1991-1997 indicate that hundreds of metric tons of herbicides and herbicide metabolites are being discharged annually to the Gulf of Mexico. Atrazine, metolachlor, and the ethane-sulfonic acid metabolite of alachlor (alachlor ESA) were the most frequently detected herbicides and, in general, were present in the largest concentrations. Almost 80% of the annual herbicide load to the Gulf of Mexico occurred during the growing season from May to August. The concentrations and loads of alachlor in the Mississippi River decreased dramatically after 1993 in response to decreased use in the basin. In contrast, the concentrations and loads of acetochlor increased after 1994, reflecting its role as a replacement for alachlor. The peak annual herbicide load occurred in 1993, when approximately 640 metric tons (t) of atrazine, 320 t of cyanazine, 215 t of metolachlor, 53 t of simazine, and 50 t of alachlor were discharged to the Gulf of Mexico. The annual loads of atrazine and cyanazine were generally 1-2% of the amount annually applied in the Mississippi River drainage basin; the annual loads of acetochlor, alachlor, and metolachlor were generally less than 1%. Despite a reduction in atrazine use, historical data do not indicate a long-term downward trend in the atrazine load to the Gulf of Mexico. Although a relation (r2 = 0.62) exists between the atrazine load and stream discharge during May to August, variations in herbicide use and rainfall patterns within subbasins can have a large effect on herbicide loads in the Mississippi River Basin and probably explain a large part of the annual variation in atrazine load to the Gulf of Mexico.  相似文献   

2.
The proportion of chloroacetanilide herbicide degradates, specifically the ethane sulfonic (ESA) and oxanilic (OA) acids, averaged 70% of the total herbicide concentration in samples from the Upper Mississippi River. In samples from the Missouri River and the Ohio River, the proportion of chloroacetanilide degradates in the total herbicide concentration was much less, 24% and 41%, respectively. The amount of tile drainage throughout the Mississippi River Basin appeared to be related to the occurrence and distribution of chloroacetanilide degradates in water samples. Pesticide concentrations in streams of the Mississippi River Basin have been well characterized. However, recent research demonstrates that in order to more fully understand the fate and transport of pesticides, the major pesticide degradates need to be included in the analysis. From March 1999 through May 2001, water samples from four major junctures of the Mississippi River Basin were collected and analyzed for a suite of herbicides and their degradate compounds. Each sampling site was selected to represent a major part of the Mississippi River: upper and lower Mississippi, Missouri and Ohio Rivers. Each basin has unique landscape variables, geology, hydrology, precipitation, and land use, which is reflected in the pesticide content at the most downstream sample site near the mouth of the Mississippi River. Atrazine was the most frequently detected herbicide (detected in 97% of the samples), followed by metolachlor (60%), and acetochlor (31%). The most frequently detected degradates were metolachlor ESA (69%), followed by deethylatrazine (62%), metolachlor OA (37%), and alachlor ESA (37%). Metolachlor ESA was detected more frequently than its parent compound (69 vs. 60%), as was alachlor ESA (37 vs. 9%). After an improvement was made in the analytical method, metolachlor ESA was detected in every sample, metolachlor OA in 89% of the samples, alachlor ESA in 84%, acetochlor ESA in 71%, and acetochlor OA in 66%.  相似文献   

3.
The science of hypoxia in the Northern Gulf of Mexico: A review   总被引:3,自引:0,他引:3  
The Mississippi River is one of the world's 10 largest rivers, with average freshwater discharge into the northern Gulf of Mexico (GOM) of 380 km3 year− 1. In the northern GOM, anthropogenic nitrogen is primarily derived from agricultural fertilizer and delivered via the Mississippi River. The general consensus is that hypoxia in the northern Gulf of Mexico is caused primarily by algal production stimulated by excess nitrogen delivered from the Mississippi-Atchafalaya River Basin and seasonal vertical stratification of incoming stream flow and Gulf waters, which restricts replenishment of oxygen from the atmosphere.In this paper, we review the controversial aspects of the largely nutrient-centric view of the hypoxic region, and introduce the role of non-riverine organic matter inputs as other oxygen-consuming mechanisms. Similarly, we discuss non-nutrient physically-controlled impacts of freshwater stratification as an alternative mechanism for controlling in part, the seasonality of hypoxia. We then explore why hypoxia in this dynamic river-dominated margin (RiOMar) is not comparable to many of the other traditional estuarine systems (e.g., Chesapeake Bay, Baltic Sea, and Long Island Sound). The presence of mobile muds and the proximity of the Mississippi Canyon are discussed as possible reasons for the amelioration of hypoxia (e.g., healthy fisheries) in this region. The most recent prediction of hypoxia area for 2009, using the current nutrient-centric models, failed due to the limited scope of these simple models and the complexity of this system. Predictive models should not be the main driver for management decisions. We postulate that a better management plan for this region can only be reached through a more comprehensive understanding of this RiOMar system—not just more information on river fluxes (e.g., nutrients) and coastal hypoxia monitoring programs.  相似文献   

4.
Atmospheric deposition of nitrogen has been cited as a major factor in the nitrogen saturation of forests in the north-eastern United States and as a contributor to the eutrophication of coastal waters, including the Gulf of Mexico near the mouth of the Mississippi River. Sources of nitrogen emissions and the resulting spatial patterns of nitrogen deposition within the Mississippi River Basin, however, have not been fully documented. An assessment of atmospheric nitrogen in the Mississippi River Basin was therefore conducted in 1998-1999 to: (1) evaluate the forms in which nitrogen is deposited from the atmosphere; (2) quantify the spatial distribution of atmospheric nitrogen deposition throughout the basin; and (3) relate locations of emission sources to spatial deposition patterns to evaluate atmospheric transport. Deposition data collected through the NADP/NTN (National Atmospheric Deposition Program/National Trends Network) and CASTNet (Clean Air Status and Trends Network) were used for this analysis. NOx Tier 1 emission data by county was obtained for 1992 from the US Environmental Protection Agency (Emissions Trends Viewer CD, 1985-1995, version 1.0, September 1996) and NH3 emissions data was derived from the 1992 Census of Agriculture (US Department of Commerce. Census of Agriculture, US Summary and County Level Data, US Department of Commerce, Bureau of the Census. Geographic Area series, 1995:1b) or the National Agricultural Statistics Service (US Department of Agriculture. National Agricultural Statistics Service Historical Data. Accessed 7/98 at URL, 1998. http://www.usda.gov/nass/pubs/hisdata++ +.htm). The highest rates of wet deposition of NO3- were in the north-eastern part of the basin, downwind of electric utility plants and urban areas, whereas the highest rates of wet deposition of NH4+ were in Iowa, near the center of intensive agricultural activities in the Midwest. The lowest rates of atmospheric nitrogen deposition were on the western (windward) side of the basin, which suggests that most of the nitrogen deposited within the basin is derived from internal sources. Atmospheric transport eastward across the basin boundary is greater for NO3- than NH4+, but a significant amount of NH4+ is likely to be transported out of the basin through the formation of (NH4)2SO4 and NH4NO3 particles--a process that greatly increases the atmospheric residence time of NH4+. This process is also a likely factor in the atmospheric transport of nitrogen from the Midwest to upland forest regions in the North-East, such as the western Adirondack region of New York, where NH4+ constitutes 38% of the total wet deposition of N.  相似文献   

5.
Nutrient enrichment of freshwaters continues to be one of the most serious problems facing the management of surface waters. Effective remediation/conservation measures require accurate qualitative and quantitative knowledge of nutrient sources, transport mechanisms, transformations and annual dynamics of different nitrogen (N) and phosphorus (P) forms. In this paper, nitrate (NO3-N), soluble reactive phosphorus (SRP) and total phosphorus (TP) concentrations and loads are presented for two adjacent rural basins of 306 km2 and 424 km2, and for five sub-basins differing in size (between 1 km2 and 33 km2), land use (extent of forest cover between 20% and 93%) and household pressure (from 0 to 40 people/km2) with the aim of studying the influence of land use and catchment size on nutrient exports. The studied catchments are all situated on Devonian schistous substrates in the Ardennes region (Belgium-Luxembourg), and therefore have similar hydrological regimes. As the study period could not be the same for all basins, annual export coefficients were corrected with the 25 years normalized discharge of the Sure River: two regression analyses (for dry and humid periods) relating monthly nutrient loads to monthly runoff were used to determine correction factors to be applied to each parameter and each basin. This procedure allows for the comparing annual export coefficients from basins sampled in different years. Results show a marked seasonal response and a large variability of NO3-N export loads between forested (4 kg N ha-1 year-1), agricultural (27-33 kg N ha-1 year-1) and mixed catchments (17-22 kg N ha-1 year-1). For SRP and TP, no significant agricultural impact was found. Land and bank erosion control the total P massflow in the studied catchments (0.4-1.3 kg P ha-1 year-1), which is mostly in a particulate form, detached and transported during storm events. Soluble reactive P fluxes ranged between 10% and 30% of the TP mass, depending on the importance of point sources in the basins studied. No relation was found between the size of the basins and the export of nitrate, SRP or TP. Nutrient export, specially for NO3-N and TP, shows significant inter-annual variations, closely linked to inter-annual discharge variations. Flow and load frequency data analysis confirm this association for all the basins on an annual basis. Seasonal or storm specific fluxes strongly deviate from their annual values.  相似文献   

6.
Nitrates fluxes in the Grand Morin basin (1200 km(2)), that is subjected to intense agricultural pressure, are considered using in-stream observations (around 250 sampling days over 5 years) and physically based simulations using the CAWAQS model (CAtchment WAter Quality Simulator). In-stream nitrate concentration averaged 6 mg N L(-1), increasing by approximately 0.2 mg N L(-1) yr(-1) around this value (period 1991-1996). Our results show that, over the period of 1991-1996, the differences between in-stream observed nitrate concentrations and simulated nitrate concentrations result from nitrate losses at the basin scale. These losses are due to denitrification by transfer through wetlands, alluvial plains, the hyporheic zone, and by benthic processes in rivers. A mean annual mass balance at the basin scale indicates that 40% of the infiltration flux (3360 kg N km(-2) yr(-1)) is removed from the system via the river network, 40% is stored in aquifers and 20% is lost by denitrification (period 1991-1996).  相似文献   

7.
Weekly composite air samples were collected from early April through to mid-September 1995 at three paired urban and agricultural sites along the Mississippi River region of the Midwestern United States. The paired sampling sites were located in Mississippi, Iowa, and Minnesota. A background site, removed from dense urban and agricultural areas, was located on the shore of Lake Superior in Michigan. Each sample was analyzed for 49 compounds; of these, 21 of 26 herbicides, 13 of 19 insecticides, and 4 of 4 related transformation products were detected during the study, with most pesticides detected in more than one sample. The maximum number of pesticides detected in an air sample was 18. Herbicides were the predominant type of pesticide detected at every site. Detection frequencies of most herbicides were similar at the urban and agricultural sites in Iowa and Minnesota. In Mississippi, herbicides generally were detected more frequently at the agricultural site. The insecticides chlorpyrifos, diazinon, and carbaryl, which are used in agricultural and non-agricultural settings, were detected more frequently in urban sites than agricultural sites in Mississippi and Iowa. Methyl parathion was detected in 70% of the samples from the Mississippi agricultural site and at the highest concentration (62 ng/m3 air) of any insecticide measured in the study. At the background site, dacthal (100%), atrazine (35%), cyanazine (22%), and the (primarily atrazine) triazine transformation products CIAT (35%) and CEAT (17%) were detected most frequently, suggesting their potential for long-range atmospheric transport.  相似文献   

8.
The Mann–Kendall test, wavelet analysis was used to analyse the long‐term trends and periodicities in temperature, precipitation and streamflow in China's Shiyang River Basin since 1950. The Principal components analysis (PCA) was used to quantify the impacts of climate change and human activities on water resources. The annual mean air temperature has increased, consistent with increasing global temperatures. The annual precipitation fluctuated but has generally increased since the 1990s. The air temperature and precipitation showed changes on periods ranging from 2 to 28 years. The correlation between annual runoff and precipitation variation was 0.61 (P < 0.05), indicating precipitation is the main source of the runoff. Human activities played the dominant role in the lower reaches, accounting for 58.5% of the total effect. The results have important implications for water resources management to support harmonisation of the relationship between humans and nature to combat the effect of climate.  相似文献   

9.
To assess the fate of the large amounts of nitrogen (N) brought into the agricultural environment by human activities in the Changjiang River basin, we used [China's county level agricultural database of 1980 and 1990. National Resources and Environmental Data Center, China] and published conversion data to set up a complete N budget for the Changjiang River basin. Sources considered include imported N such as atmospheric deposition, inorganic fertilizer, biological fixation and manure. Dominant losses considered include crop harvests, denitrification of soil nitrate and NH3 volatilization, and the budget was estimated from the difference between all inputs and all outputs. Therefore, the geographic distribution of excess N, considered as lost, by N storage in farmland and N transported to water bodies in Changjiang River basin was analyzed. In the Changjiang River basin, the anthropogenic reactive N has far exceeded the terrestrial bio-fixed N in nature, and human activities have significantly altered the N cycle in this region. The total inputs of N in 1980 and 1990 were 8.0 and 12.9 Tg N, respectively. The total N outputs are 4.41 Tg N in 1980 and 6.85 Tg N in 1990. Thus, the excess N that was stored in farmland was 1.51 Tg N at 1980 and 2.67 Tg N at 1990, respectively, and losses through transportation to water bodies in 1980 was 2.08 and 3.38 Tg N in 1990, respectively. Our research shows that from 1980 to 1990, cultivated land increased 5.9%, grain production increased 30% and N fertilizer-use increased 106%, but the N fertilizer-use efficiency decreased 36%, and the variations in the distribution of N fertilizer-use efficiency, N budgets and N transport to water bodies tended to coincide with each other geographically.  相似文献   

10.
Flooding in the Upper Mississippi River Basin during the summer of 1993 caused between US$ 12 and 16 billion worth of damage. Since 1993, millions of dollars of new development have poured into the flood-impacted areas contrary to the recommendations of Interagency Floodplain Management Review Committee, among others. Tracking development has been difficult. A diverse set of regulations and land use controls have caused varying amounts of development in the Upper Mississippi River Basin, with Missouri leading the way with over 17.31 km2 of new development. This study documents the changes in the basin affected by the 1993 floods 10 years after the event by conducting an analysis to identify new development within the 500-year floodplain and in the floodwater inundated areas. This study used Landsat satellite data to identify areas experiencing development.  相似文献   

11.
Methylmercury (MeHg) bioaccumulates in aquatic food webs and can pose health risks to animals at higher trophic levels. Characterization of MeHg production in and export from watersheds can help clarify exposure scenarios for aquatic life downstream. A number of studies have demonstrated that anoxic conditions in the saturated soils of wetlands can promote the production of MeHg, and these wetlands may be major sources of MeHg to connected water bodies. Here, we report in-stream loadings of total mercury (THg) and MeHg for five rivers in Minnesota (USA). The watersheds of these rivers differ widely in the proportion of land area made up by wetlands and in other land use, drainage, and soil characteristics. Export of THg from these rivers varied widely, with much higher loadings and annual average concentrations of THg in streams of the Minnesota River basin compared to streams in the headwater Mississippi River basin. In contrast and despite the apparent differences in the makeup of these watersheds, yields and annual average concentrations of MeHg were remarkably similar for the rivers studied here. Differences in land use/land cover, drainage, soils, and other characteristics of these watersheds influence the export of both THg and MeHg in these rivers, but overall MeHg yields vary less than THg yields.  相似文献   

12.
Sources and sinks of the atmospherically reactive gas nitrous oxide (N(2)O) were determined in the heavily nutrient loaded Childs River in Cape Cod, MA. Surface waters were supersaturated and bottom waters were depleted with N(2)O throughout the system. In apparent septic effluent plumes, N(2)O concentrations reached 3 orders of magnitude above atmospheric equilibrium. Because nitrate and N(2)O concentrations correlated in groundwater entering the estuary, septic tank effluent appeared responsible for the supersaturated concentrations of N(2)O in surface waters. A hyperbolic function fit nitrate and N(2)O concentrations in the water column of the estuary with a maximum supersaturation of approximately 60 nM. From surface water supersaturation we predicted a release of 480 nmol N(2)O m(-2) h(-1) to the atmosphere in the summer. Property plots of salinity vs. bottom-water N(2)O suggested a benthic sink of N(2)O. Consistent with this trend, sediments consumed rather than released N(2)O in most flux measurements. Nutrient loading did not directly alter benthic N(2)O flux, potentially because stratification limited exposure of sediments to nitrate-rich surface waters, but macroalgal cover increased benthic N(2)O consumption. Sediment N(2)O consumption averaged 111 nmol N(2)O m(-2) h(-1) and correlated with oxygen uptake. Losses from the system to the atmosphere and sediments exceeded inputs of N(2)O contaminated groundwater, which suggests missing N(2)O sources.  相似文献   

13.
The present paper is based on discharges and suspended particulate matter concentrations from a 9-years high-resolution database for the Garonne River (large plain river) covering contrasted hydrologic years, and a 12-months high frequency sampling for the Nivelle River (small mountainous river). Annual SPM fluxes in the Garonne River range from 0.6 x 10(6) t year(-1) (1997) to 3.9 x 10(6) t year(-1) (1996). In contrast, the Nivelle River transported 11 x 10(3) t year(-1) from December 1995 to December 1996. From the long-term observation of the Garonne River an empirical relation between SPM* (discharge-weighted mean annual SPM concentrations) and annual discharge was established. This relation allows estimating annual SPM fluxes for the Garonne River with less than 30% deviation from reference values for the whole range of mean annual discharge observed during the past decade. Specific (=area-normalized) annual SPM fluxes (YSPM) range from 11 to 74 t km(-2) year(-1) for the Garonne River. Comparison of these results with YSPM of the Nivelle River (69 t km(-2) year(-1) in 1996) suggests that interannual hydrological variations may have a greater impact on fluvial SPM transport than basin-specific parameters. By extracting individual SPM concentrations and corresponding discharge values from the database, different sampling frequencies were simulated and resulting SPM fluxes were then compared to reference fluxes derived from the complete database. If a deviation of simulated flux estimates from reference fluxes lower than +/-20% is accepted, the Garonne River (large plain river) must be sampled at least every 3 days (10 samples per month) and the Nivelle River every 7 h (approx. 100 samples per month). For the Garonne River this minimum sampling frequency is valid for all contrasted hydrologic years of the observation period. Below these minimum sampling frequencies, annual SPM flux estimates may greatly differ from reference fluxes (up to 200%) and there is high probability of systematic underestimation. Consequently, annual SPM flux estimates for the Garonne River derived from the empirical relation (SPM*-annual discharge) are likely to be more satisfactory (errors <30%) than estimates based on sampling frequencies lower than the minimum frequency. These findings underline the need of adapted sampling strategies for erosion assessment, reliable chemical (e.g. nutrients and pollutants) mass balances and characterisation of fluvial transport mechanisms in the world's contrasted watersheds.  相似文献   

14.
Directed acyclic graphs and multivariate time-series analysis are used to identify and measure the effect of lock delay on the upper Mississippi and Illinois Rivers grain barge rates. Lock congestion on these rivers and its potentially unfavorable impact on grain barge rates that link the Midwest US to lower Mississippi River ports are of great concern. Results show that accumulated lock delay on segments of the upper Mississippi and Illinois Rivers increases grain barge rates; however, the estimated dynamic relationships show that the impact is not large.
David A. BesslerEmail:
  相似文献   

15.
Iqbal MZ 《Water research》2002,36(3):788-792
Nitrate flux from a bedrock aquifer due to a storm was calculated by hydrograph separation. The hydrograph generated by a 20-mm rain in Cedar River of Iowa was separated into the following three components: the constant baseflow, the rainwater, and the water released from aquifer in excess of baseflow. The separation was conducted by using oxygen isotopes, dissolved nitrate, and stream discharge. The peak discharge was 33h long. During this period, the water released from the aquifer storage in excess of baseflow was 36% of the total discharge. The rainwater and the pre-storm baseflow equivalents were 17% and 47%, respectively. The nitrate concentrations in the instantaneous discharge ranged between 8.6 and 10.0 mg/L. The average concentrations in the rainwater and the baseflow were 3.7 and 9.8 mg/L, respectively. A total of 3.6 x 10(5) mol of nitrate was transported by the stream during the 33 h of peak discharge. Approximately 35% (1.3 x 10(5) mol) of this mass was derived from the aquifer storage in excess of baseflow contribution. The rainwater and the constant baseflow equivalentswere 7% (2.6 x 10(4) mol) and 58% (2.1 x 10(5) mol), respectively. The release of a significant amount of nitrate from the aquifer suggests that the local geology is favorable for vertical recharge of rainwater which causes an increased fluid pressure within the aquifer forcing ground water to discharge laterally into the stream. Such observation also implies that the aquifer is effectively flushed out during storms, thus restricting long term build-up of nitrate from agricultural sources.  相似文献   

16.
Dissolved and particulate organic carbon concentrations were measured and annual loads estimated for the Trinity River, the main freshwater input source to Galveston Bay, which lies on the upper Gulf coast of Texas, USA, during 2000-2001. This river drains the forested lowlands south of a relatively large reservoir lake, Lake Livingston. A weak relationship between dissolved organic carbon (DOC) and Q(TR) indicated hydrologic control but separation of the data, based on individual discharge events, was necessary to improve interpretation. For instance, the first rain of the season resulted in only a modest increase in DOC concentrations and led to an inverse relationship with discharge, due to decreased lateral flow and increased infiltration of rainwater, with the lower flows being more efficient at DOC leaching from soils. In contrast, a long duration high discharge river crest event resulted in an opposite trend, i.e. a linear increase in DOC with increasing discharge rates. A short duration high discharge tropical storm showed reduced Trinity River DOC concentrations and the highest POC concentrations measured, likely resulting from the relatively short duration, and minimal contact time, of this event. In contrast to DOC, the concentrations of particulate organic carbon, POC (mg C l(-1)) were linearly correlated to suspended particulate matter (SPM) concentrations and accounted for between 10 and 12% of the total suspended load at low discharge but decreased to approximately 2% at high discharge. This suggests dilution by larger particles with a reduced organic carbon content, possibly silicate minerals, more readily resuspended at elevated levels of discharge. The annual total organic carbon (TOC) load to Galveston Bay, estimated from the slope of the daily load vs. discharge relationship, was 11.2 x 10(10) g C and calculated export coefficients (g C m(-2) year(-1)) were in good agreement with previous results. Using this relationship, accurate assessments of TOC flux inputs to Galveston Bay over the past quarter-century and in the future are possible by obtaining annual Trinity River discharge rates, which are readily available from the USGS. Comparing DOC riverine inputs to benthic sources in Trinity Bay, measured directly on the same day, indicates that the sediments contribute approximately 20% of total inputs of DOC to Trinity Bay. However, assuming a constant benthic source during low-flow conditions, which can occur for periods of up to 14 months in this region of Texas, benthic fluxes would account for > 80% of the total inputs into Trinity Bay. At high levels of discharge, the Trinity River discharges approximately 1.0 x 10(9) g C day(-1) and dominates DOC inputs to Trinity Bay.  相似文献   

17.
Very high levels of mercury (Hg) have recently been reported in marine mammals and other higher trophic-level biota in the Mackenzie Delta and Beaufort Sea of the western Arctic Ocean. To quantify the input of Hg (particulate, dissolved and methylated) by the Mackenzie River as a potential source for Hg in the ecosystem, surface water and sediment samples were taken from 79 sites in the lower Mackenzie Basin during three consecutive summers (2003-2005) and analyzed for Hg and methylmercury (MeHg). Intensive studies were also carried out in the Mackenzie Delta during the freshets of 2004 and 2005. Large seasonal and annual variations were found in Hg concentrations in the river, coincident with the variations in water discharge. Increased discharges during spring freshet and during the summers of 2003 and 2005 compared to 2004 were mirrored by higher Hg concentrations. The correlation between Hg concentration and riverflow suggests additional Hg sources during periods of high water, potentially from increased surface inundation and increased bank erosion. The increase in the Hg concentration with increasing water discharge amplifies the annual Hg and MeHg fluxes during high water level years. For the period 2003-2005, the Hg and MeHg fluxes from the Mackenzie River to the Beaufort Sea averaged 2.2 tonnes/yr and 15 kg/yr, respectively, the largest known Hg source to the Beaufort Sea. More than half of the mercury flux occurs during the short spring freshet season which coincides with the period of rapid growth of marine biota. Consequently, the Mackenzie River input potentially provides the major mercury source to marine mammals of the Beaufort Sea. The Hg and MeHg fluxes from the Mackenzie River are expected to further increase with the projected climate warming in the Mackenzie Basin.  相似文献   

18.
Capacity of a wetland to remove nitrate through denitrification is controlled by its physico-chemical and biological characteristics. Understanding these characteristics will help better to guide beneficial use of wetlands in processing nitrate. This study was conducted to determine the relationship between soil organic carbon (SOC) quality and denitrification rate in Louisiana coastal wetlands. Composite soil samples of different depths were collected from three different wetlands along a salinity gradient, namely, bottomland forest swamp (FS), freshwater marsh (FM), and saline marsh (SM) located in the Barataria Basin estuary. Potential denitrification rate (PDR) was measured by acetylene inhibition method and distribution of carbon (C) moieties in organic C was determined by 13C solid-state NMR. Of the three wetlands, the FM soil profile exhibited the highest PDR on both unit weight and unit volume basis as compared to FS and SM. The FM also tended to yield higher amount of N2O as compared to the FS and SM especially at earlier stages of denitrification, suggesting incomplete reduction of NO3(-) at FM and potential for emission of N2O. Saline marsh soil profile had the lowest PDR on the unit volume basis. Increasing incubation concentration from 2 to 10 mg NO3(-)-N L(-1) increased PDR by 2 to 6 fold with the highest increase in the top horizons of FS and SM soils. Regression analysis showed that across these three wetland systems, organic C has significant effect in regulating PDR. Of the compositional C moieties, polysaccharides positively influenced denitrification rate whereas phenolics (likely phenolic adehydes and ketonics) negatively affected denitrification rate in these wetland soils. These results could have significant implication in integrated assessment and management of wetlands for treating nutrient-rich biosolids and wastewaters, non-point source agricultural runoff, and nitrate found in the diverted Mississippi River water used for coastal restoration.  相似文献   

19.
Dynamics of diffuse pollution from US southern watersheds   总被引:7,自引:0,他引:7  
To understand the effects of diffuse pollution information on the source of pollutants, quantities in transport, mode of transport, transient nature of the pollution event, and most importantly, a consideration of remediation efforts need to be known. For example, water quality research in the Yazoo Basin uplands in Mississippi has shown sediment loads from a conventional-till upland soybean watershed to be about 19,000kg/ha/yr, and responsible for 77-96% of P and N in transport. In contrast, sediment loads from a comparable no-till soybean watershed were only 500 kg/ha/yr. transporting about 31% of P and N in transport. Sediment loads from a nearby forested area were low, about 200 kg/ha/yr, but responsible for about 47-76% of P and N in transport. Transient pollution events are responsible for the transport of large quantities of sediment, nutrients, and pesticides; in some storm events nearly the annual load. Best management practices (BMPs) must be designed to remediate diffuse pollution and the transient nature of pollution events which can have a profound effect on the ecological health of steams and reservoirs.  相似文献   

20.
This paper presents a study of 10 English chalk streams in the River Thames Basin historically affected by abstraction of groundwater. Using macroinvertebrates, macrophytes and river discharge records from across 76 monitoring sites, and spanning the period 1992–2009 we assess how the communities change over time. River discharge is seen to be the most influential variable in biological community composition, and is used to calculate the annual average river discharge (in m3/s) needed to sustain different biological assemblages at each study site, from the lowest to the highest expression of fluvial aquatic community development. This represents a bottom‐up or site‐specific approach to the determination of ecological flow thresholds, from which more empirical trends may be inferred at regional level. The approach also provides a useful understanding of the timescales involved in the recovery of communities from drought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号