共查询到20条相似文献,搜索用时 74 毫秒
1.
沈绍辉 《可编程控制器与工厂自动化(PLC FA)》2017,(5):85-88
针对支持向量机核函数参数和惩罚因子的不同取值会影响到柴油机故障分类正确率的问题,提出利用差分进化算法对支持向量机相关参数进行选择优化,并在实际中通过柴油机故障诊断实验证明了该方法能够获得较高的故障分类正确率,而且运行时间较短,即说明该方法具有一定的实用性。 相似文献
2.
3.
4.
5.
6.
7.
8.
9.
针对模糊核聚类方法中,核函数参数的确定问题以及聚类结果的有效评价问题,提出采用差分进化算法进行核函数参数和聚类中心的同时寻优策略。并将Xie-Beni指标推广至核空间,设计了有效的适应度函数以实现聚类效果的提升。对所提出的方法进行数值试验,同时应用在电机轴承的故障诊断中,取得了不错的效果,验证了方法的可行性。 相似文献
10.
电力变压器是电力系统运行中的重要设备之一,对故障和缺陷进行正确的诊断,关系到整个电网的运行安全。支持向量机(SVM)能够较好地解决小样本、非线性特征的多分类问题,适用于变压器故障类型判断。利用布谷鸟搜索算法,对支持向量机进行寻优得到全局最优解,从而得到具有最佳参数的支持向量机分类模型。该分类模型将变压器油色谱数据(DGA)中各气体相对含量作为评估指标,将变压器的故障分为低能放电、高能放电、中低温过热、高温过热等4个故障类型。通过已有的数据实例分析得出,利用布谷鸟搜索算法得到的分类模型比常用的网格搜索算法(GS)、粒子群搜索算法(PSO)、遗传算法搜索(GA)等算法得到的模型拟合准确率更好。 相似文献
11.
针对单一的特征气体或特征气体比值作为DGA特征量无法全面反映变压器故障分类的问题,本文从混合DGA特征量中优选出一组DGA新特征组合为输入,建立改进磷虾群(Improved Krill Herd,IKH)算法优化支持向量机(Support vector machine,SVM)的变压器故障诊断模型进行故障诊断。将SVM的c和s与11种候选特征量进行二进制编码,利用遗传算法结合支持向量机对DGA特征量进行优选,得到一组最优DGA新特征组合;利用IKH算法对SVM的参数进行优化,同时结合交叉验证原理构建IKH算法优化SVM的变压器故障诊断模型。基于IEC TC 10的诊断结果表明:与DGA全数据、三比值特征量相比,新DGA特征组合的故障诊断准确率分别高出10.14%和30.2%;IKHSVM准确率也要高于标准SVM和GASVM(分别为73.87%、81.13%和86.27%),说明该方法能有效诊断变压器故障。 相似文献
12.
13.
14.
15.
本文中作者介绍了灰色关联度分析的计算方法,分析了改进型灰色关联算法的基本原理,结合实例对改进型灰色关联算法在变压器故障诊断中的应用进行了研究。 相似文献
16.
对引起一台主变压器故障的原因进行了分析与判断,提出对变压器的内部故障要结合历年试验数据和多种测试方法进行综合判断。 相似文献
17.
18.
19.