首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
X-linked ocular albinism (OA1), Nettleship-Falls type, is characterized by decreased ocular pigmentation, foveal hypoplasia, nystagmus, photodysphoria, and reduced visual acuity. Affected males usually demonstrate melanin macroglobules on skin biopsy. We now report results of deletion and mutation screening of the full-length OA1 gene in 29 unrelated North American and Australian X-linked ocular albinism (OA) probands, including five with additional, nonocular phenotypic abnormalities (Schnur et al. 1994). We detected 13 intragenic gene deletions, including 3 of exon 1, 2 of exon 2, 2 of exon 4, and 6 others, which span exons 2-8. Eight new missense mutations were identified, which cluster within exons 1, 2, 3, and 6 in conserved and/or putative transmembrane domains of the protein. There was also a splice acceptor-site mutation, a nonsense mutation, a single base deletion, and a previously reported 17-bp exon 1 deletion. All patients with nonocular phenotypic abnormalities had detectable mutations. In summary, 26 (approximately 90%) of 29 probands had detectable alterations of OA1, thus confirming that OA1 is the major locus for X-linked OA.  相似文献   

2.
To evaluate mutations in the low density lipoprotein receptor (LDL-R) gene in moderate primary hypercholesterolemia, a combination of polymerase chain reaction (PCR), single-strand conformation polymorphism (SSCP) and direct sequencing, was used to screen the LDL-R gene in a selected population of 82 unrelated individuals with moderate elevation of plasma LDL-C [mean 4.55 +/- 0.55 mmol/l (176.4 +/- 21.6 mg/dl)]. Four subjects (5%) were found to be heterozygotes for missense mutations in the LDL-R gene. These mutations were located in four different exons (exons 6, 7, 15 and 17) and all alters highly conserved residues of LDL-R protein. None of these mutations were detected in 79 normocholesterolemic individuals. The mutation in exon 15 (T705I) was previously reported in a compound heterozygote for familial hypercholesterolemia (FH). In the proband carrying the mutation in exon 17 (R793Q), an in vivo LDL turnover study was performed and it demonstrated a reduction of LDL catabolism. These findings demonstrate that mutations in the LDL-R may occur in primary moderate hypercholesterolemia. They also extend the concept that some FH patients may present with a mild phenotype.  相似文献   

3.
The genetic defect in a patient with hereditary type I protein S (PS) deficiency was investigated. All the exons and intron-exon junctions of the patient's PS gene were amplified by PCR and subjected to heteroduplex screening. Only the PCR product of exon 4 revealed heteroduplex bands. A novel nonsense mutation, Ser62 (TCA) to Stop (TGA) was found in exon 4. RT-PCR detected the aberrant mRNA in the patient's platelets, which was markedly reduced in amount and lacked the region of exon 4, suggesting that the nonsense mutation affected the mutated mRNA metabolism and induced exon skipping. The skipping of exon 4 causes an in-frame deletion of 29 amino acids which just construct the thrombin-sensitive region of the PS molecule. The loss of such an important domain as well as the quantitative decrease in the mutated mRNA appear to be responsible for the type I PS deficiency in this patient.  相似文献   

4.
The genetic defects causing recessive type 1 and type 3 von Willebrand disease (VWD) in eight families from the northern part of Italy have been investigated. Mutations were identified in 14 of the 16 disease-associated von Willebrand factor (VWF) genes. Only one mutation, a stop codon in exon 45, was previously reported. Several new mutations were identified: one cytosine insertion in exon 42, one guanine deletion in exon 28, one probably complete VWF gene deletion, one substitution in the 3' splice site of intron 13, one possible gene conversion, and three candidate missense mutations. One missense mutation, the substitution of a cysteine in exon 42, was identified in all type 3 VWD patients that were previously characterized as a subgroup with significant increase of factor VIII procoagulant activity after desmopressin infusion. This paper demonstrates again that the molecular defects of quantitative VWD are diverse and located throughout the entire VWF gene.  相似文献   

5.
6.
Autosomal recessive juvenile parkinsonism (AR-JP) is a distinct clinical and genetic entity characterized by selective degeneration of nigral dopaminergic neurons and young-onset parkinsonism with remarkable response to levodopa. Recently, we mapped the gene locus for AR-JP to chromosome 6q25.2-q27 by linkage analysis and we identified a novel large gene, Parkin, consisting of 12 exons from this region; mutations of this gene were found to be the cause of AR-JP in two families. Now we report results of extensive molecular analysis on 34 affected individuals from 18 unrelated families with AR-JP. We found four different homozygous intragenic deletional mutations, involving exons 3 to 4, exon 3, exon 4, and exon 5 in 10 families (17 affected individuals). In addition to the exonic deletions, we identified a novel one-base deletion involving exon 5 in two families (2 affected individuals). All mutations so far found were deletional types in which large exonic deletion accounted for 50% (17 of 34) and the one-base deletion accounted for 6% (2/34); in the remaining, no homozygous mutations were found in the coding regions. Our findings indicate that loss of function of the Parkin protein results in the clinical phenotype of AR-JP and that subregions between introns 2 and 5 of the Parkin gene are mutational hot spots.  相似文献   

7.
A candidate gene, myotubularin, involved in the pathogenesis of X-linked myotubular myopathy (MTM1) was isolated recently. Mutations originally were identified in 12% of patients examined for 40% of the coding sequence, raising the possibility that additional genes could be responsible for a proportion of X-linked cases. We report here the identification of mutations in 26 of 41 independent male patients with muscle biopsy-proven MTM, by direct genomic sequencing of 92% of the known coding sequence of the myotubularin gene. Eighteen patients had point mutations, including one A/G transition found in four patients which alters a splice acceptor site in exon 12 and leads to a three amino acid insertion. Six patients had small deletions involving <6 bp, while two larger deletions encompassed two or six exons, respectively. No differences were noted among the types of mutations between familial and sporadic cases. However, all of the five patients with a mild phenotype had missense mutations. While 50% of the mutations were found in exons 4 and 12, and three distinct mutations were found in more than one patient, no single mutation accounted for more than 10% of the cases. The low frequency of large deletions and the varied mutations identified suggest that direct mutation screening for molecular diagnosis may require gene sequencing.  相似文献   

8.
We have used single strand conformation polymorphism analysis to study the 27 exons of the RB1 gene in individuals from a family showing 'mild' expression of the retinoblastoma phenotype. In this family affected individuals developed unilateral tumors and, as a result of linkage analysis, unaffected mutation carriers were also identified within the pedigree. A single band shift using SSCP was identified in exon 21 which resulted in a missense mutation converting a cys-->arg at nucleotide position 28 in the exon. The mutation destroyed an NdeI restriction enzyme site. Analysis of all family members demonstrated that the missense mutation co-segregated with patients with tumors or who, as a result of linkage analysis had been predicted to carry the predisposing mutation. These observations point to another region of the RB1 gene where mutations only modify the function of the gene and raise important questions for genetic counseling in families with these distinctive phenotypes.  相似文献   

9.
Deletion and insertion mutations have been found to be a major component of the in vivo somatic mutation spectrum in the hypoxanthine phosphoribosyltransferase (hprt) gene of T-lymphocytes. In a population of 172 healthy people (average age, 34; mutant frequency, 10.3 x 10(-6)), deletion/insertion mutations constituted 41% (89) of the 217 independent mutations, the remainder being base substitutions. Mutations were identified by multiplex PCR assay of genomic DNA for exon regions, by sequencing cDNA, or sequencing genomic DNA. The deletion and insertion mutations were divided among +/- 1 to 2 basepair (bp) frameshifts (14%, 30), small deletions and insertions of 3-200 bps (13%, 28), large deletions of one or more exons (12%, 27), and complex events (2%, 4). Frameshift mutations were dominated by -1 bp deletions (21 of 30). Exon 3 contained five frameshift mutations in the run of 6 Gs, the only site in the coding region with multiple frameshift mutations, possibly caused by strand dislocation during replication. Both endpoints were sequenced for 23 of the 28 small deletions/insertions including two tandem duplication events in exon 6. More small deletions (8/28), possibly mediated by trinucleotide repeats, occurred in exon 2 than in the other exons. Large deletions included total gene deletions (6), exon 2 + 3 deletions (4), and loss of multiple (9) and single exons (8) in genomic DNA. The diverse mutation spectrum indicates that multiple mechanisms operated at many different sequences and provides a resource for examination of deletion mutation.  相似文献   

10.
Propionyl-CoA carboxylase (PCC) is a mitochondrial biotin-dependent enzyme composed of an equal number of alpha and beta subunits. Mutations in the PCCA (alpha subunit) or PCCB (beta subunit) gene can cause the inherited metabolic disease propionic acidemia (PA), which can be life threatening in the neonatal period. Lack of data on the genomic structure of PCCB has been a significant impediment to full characterization of PCCB mutant chromosomes. In this study, we describe the genomic organization of the coding sequence of the human PCCB gene and the characterization of mutations causing PA in a total of 29 unrelated patients-21 from Spain and 8 from Latin America. The implementation of long-distance PCR has allowed us to amplify the regions encompassing the exon/intron boundaries and all the exons. The gene consists of 15 exons of 57-183 bp in size. All splice sites are consistent with the gt/ag rule. The availability of the intron sequences flanking each exon has provided the basis for implementation of screening for mutations in the PCCB gene. A total of 56/58 mutant chromosomes studied have been defined, with a total of 16 different mutations detected. The mutation spectrum includes one insertion/deletion, two insertions, 10 missense mutations, one nonsense mutation, and two splicing defects. Thirteen of these mutations correspond to those not described yet in other populations. The mutation profile found in the chromosomes from the Latin American patients basically resembles that of the Spanish patients.  相似文献   

11.
Genomic analysis and detailed blood coagulation examinations of 22 family members of 18 families with repeatedly low protein C activity have been performed. Blood coagulation examinations: INR, fibrinogen, plasminogen, alpha-2-antiplasmin, lupus anticoagulant, APC resistance test, protein C activity and antigen, protein S activity and antithrombin activity. Genetic examinations: the presence of FII G20210A alle and FV:Q506 Leiden mutation were examined and for the mutation screening in the protein C gene combination of polymerase chain reaction (PCR) with denaturing gradient gelelectrophoresis (DGGE) or with single-strand conformation polymorphism (SSCP) analysis has been performed. The amplified DNA fragments with aberrant migration during DGGE and SSCP analysis were sequenced. Nine family members of seven families were identified carrying mutations in the protein C gene: one nonsense mutation in exon VII (Arg 157-Stop), two types of missense mutations in four patients in exon IXA (230 Arg-Lys, 254 Thr-Ile, the latter is a new mutation, Protein C Pécs), one missense mutation in two patients in exon IXB (325 Val-Ala), one missense mutation in exon IXC (359 Asp-Asn) and a rare frameshift deletion in exon IXC (364 Met-Trp, 378 Stop). Nine families were evaluated carrying no mutation in their protein C gene, but other genetic or blood coagulation disturbances have been identified, eight of them had borderline decrease in their protein C activity (60-70%). The presence of FV:Q506 mutation could be diagnosed in eight families (in 3 cases homozygous, in 5 cases heterozygous form), among them combination of the defects could be proved in three of the eight families: FV:Q506 Leiden mutation with antiphospholipoid antibodies in 2 families and the presence of Leiden mutation with prothrombin gene mutation in 1 family. Protein S deficiency in combination with prothrombin gene mutation has been identified in 1 family. There were 2 families where no genetic or blood coagulation alterations could be detected in the background of the repeatedly low protein C activity. Large deletions or insertions which are not detectable by our screening methods could not be excluded in these families and therefore sequencing of the total protein C gene had been performed with negative results. According to the literature and our experience the screening methods that were administered in this study are suitable for the detection of mutations in the protein C gene.  相似文献   

12.
Alterations in the FHIT gene region have been previously associated with smoking status and the occurrence of lung tumors. In the current study, we examined the nature of the mutations that occur at FHIT and the types of carcinogen exposures that are associated with FHIT alterations. We screened 40 primary lung tumors for the presence of point mutations within the coding exons of FHIT using PCR-single-strand conformational polymorphism. Tumors were also analyzed for allelic loss using microsatellite markers located in or near FHIT. No tumors contained point mutations within the coding region of the FHIT gene. However, several samples failed to generate a PCR product, suggesting that regions of the gene are homozygously deleted. Samples were reanalyzed for exon loss using PCR; 13 of 30 tumors failed to generate a PCR product, and 20 of 30 tumors were missing at least one FHIT exon or had loss (loss of heterozygosity or deletion) of one microsatellite marker, suggesting that regions of the gene are homozygously deleted. These data indicate that the FHIT gene has a novel pattern of mutational inactivation not seen previously with other tumor suppressor genes, most likely influenced by the proximity of the FRA3B region. There were no associations of age, sex, p53, or k-ras mutation and FHIT exon deletion. However, there was an association of smoking duration and asbestos exposure with FHIT exon loss, indicating that carcinogenic exposures may be causal in the generation of alterations in the FHIT region.  相似文献   

13.
We report four new mutations in Japanese patients with mucopolysaccharidosis IVA (MPSIVA) who were heterozygous for a common double gene deletion. A nonsense mutation of CAG to TAG at codon 148 in exon 4 was identified, resulting in a change of Q to a stop codon and three missense mutations. V (GTC) to A (GCC) at codon 138 in exon 4, P (CCC) to S (TCC) at codon 151 in exon 5, and P (CCC) to L (CTC) at codon 151 in exon 5. Introduction of these mutations into the normal GALNS cDNA and transient expression in cultured fibroblasts resulted in a significant decrease in the enzyme activity. V138A and Q148X mutations result in changes of restriction site, which were analyzed by restriction-enzyme assay. P151S and P151L mutations that did not alter the restriction site were detected by direct sequencing or allele specific oligohybridization. Detection of the double gene deletion was initially done using Southern blots and was confirmed by PCR. Haplotypes were determined using seven polymorphisms to the GALNS locus in families with the double gene deletion. Haplotype analysis showed that the common double gene deletion occurred on a single haplotype, except for some variation in a VNTR-like polymorphism. This finding is consistent with a common founder for all individuals with this mutation.  相似文献   

14.
We characterized the pyruvate carboxylase (PC) gene by PCR amplification, subcloning, and sequencing. The coding region has 19 exons and 18 introns spanning approximately 16 kb of genomic DNA. Screening both the cDNA and the gene of individuals with the simple A form of PC deficiency revealed an 1828G-->A missense mutation in 11 Ojibwa and 2 Cree patients and a 2229G-->T transversion mutation in 2 brothers of Micmac origin. Carrier frequency may be as high as 1/10 in some groupings. The two point mutations are located in a region of homology conserved among yeast, rat, and human PC, in the vicinity of the carboxylation domain of the enzyme. These data provide the first characterization of the human PC gene structure, the identification of common pathogenic mutations, and the demonstration of a founder effect in the Ojibwa and Cree patients.  相似文献   

15.
The gene for the most common and severe form of autosomal dominant polycystic kidney disease, PKD1, encodes a 14 kb mRNA that is predicted to result in an integral membrane protein of 4302 amino acids. The major challenge faced by researchers attempting to complete mutation analysis of the PKD1 gene has been the presence of several homologous loci also located on chromosome 16. Because the sequence of PKD1 and its homologs is nearly identical in the 5' region of the gene, most traditional approaches to mutation analysis cannot distinguish sequence variants occurring uniquely in PKD1. Therefore, only a small number of mutations have been identified to date and these have all been found in the 3', unique portion of the gene. In order to begin analysis of the duplicated region of PKD1, we have devised a novel strategy that depends on long-range PCR and a single gene-specific primer from the unique region of the gene to amplify a PKD1-specific template that spans exons 23-34. This 10 kb template, amplified from genomic DNA, can be employed for mutation analysis using a wide variety of sequence-based approaches. We have used our long-range PCR strategy to begin screening for sequence variants with heteroduplex analysis, and several affected individuals were discovered to have clusters of base pair substitutions in exons 23 and 25. In two patients, these changes, identified in exon 23, would be predicted to result in multiple amino acid substitutions in a short stretch of the protein. This clustering of base pair substitutions is unusual and suggests that mutation may result from unique structural features of the PKD1 gene.  相似文献   

16.
We report studies of two unrelated Japanese patients with 17alpha-hydroxylase deficiency caused by mutations of the 17alpha-hydroxylase (CYP17) gene. We amplified all eight exons of the CYP17 gene, including the exon-intron boundaries, by the polymerase chain reaction and determined their nucleotide sequences. Patient 1 had novel, compound heterozygous mutations of the CYP17 gene. One mutant allele had a guanine to thymine transversion at position +5 in the splice donor site of intron 2. This splice-site mutation caused exon 2 skipping, as shown by in vitro minigene expression analysis of an allelic construct, resulting in a frameshift and introducing a premature stop codon (TAG) 60 bp downstream from the exon 1-3 boundary. The other allele had a missense mutation of His (CAC) to Leu (CTC) at codon 373 in exon 6. These two mutations abolished the 17alpha-hydroxylase and 17,20-lyase activities. Restriction fragment length polymorphism (RFLP) analysis with a mismatch oligonucleotide showed that the patient's mother and brother carried the splice-site mutation, but not the missense mutation. Patient 2 was homozygous for a novel 1-bp deletion (cytosine) at codon 131 in exon 2. This 1-bp deletion produces a frameshift in translation and introduces a premature stop codon (TAG) proximal to the highly conserved heme iron-binding cysteine at codon 442 in microsomal cytochrome P450 steroid 17alpha-hydroxylase (P450c17). RFLP analysis showed that the mother was heterozygous for the mutation.  相似文献   

17.
18.
Hereditary fructose intolerance (HFI) is a potentially fatal autosomal recessive disease of carbohydrate metabolism. HFI patients are deficient in aldolase B, the isozyme expressed in fructose-metabolizing tissues. The eight protein coding exons, including splicing signals, of the aldolase B gene from one American HFI patient were amplified by the polymerase chain reaction (PCR). Single-strand conformational polymorphism (SSCP) analysis and direct sequence determination were applied to the amplified fragments. The mutations in the patient's alleles were identified as a nonsense mutation (R59op) in exon 3 and a missense mutation (C134R) in exon 5. These mutations were confirmed by sequence determination of cloned PCR-amplified exons 3 and 5 from the patient. Allele specific oligonucleotide (ASO) hybridizations of amplified exons 3 and 5 showed the Mendelian inheritance of both mutations. Site-directed mutagenesis was used to generate an expression plasmid for the C134R mutation, and the mutant enzyme was expressed in bacteria. Assays of partially purified enzyme preparations showed that this missense mutation results in an apparently unstable enzyme that retains partial activity. This is the first evidence for a partially active aldolase B from an HFI individual with an identified mutation, and supports the hypothesis that adequate gluconeogenesis/glycolysis is maintained in HFI patients by the presence of partially active enzymes.  相似文献   

19.
X-linked lymphoproliferative disease (XLP) is an inherited immunodeficiency characterised by selective susceptibility to Epstein-Barr virus and frequent association with malignant lymphomas chiefly located in the ileocecal region, liver, kidney and CNS. Taking advantage of a large bacterial clone contig, we obtained a genomic sequence of 197620 bp encompassing a deletion (XLP-D) of 116 kb in an XLP family, whose breakpoints were identified. The study of potential exons from this region in 40 unrelated XLP patients did not reveal any mutation. To define the critical region for XLP and investigate the role of the XLP-D deletion, detailed haplotypes in a region of approximately 20 cM were reconstructed in a total of 87 individuals from 7 families with recurrence of XLP. Two recombination events in a North American family and a new microdeletion (XLP-G) in an Italian family indicate that the XLP gene maps in the interval between DXS1001 and DXS8057, approximately 800 kb centromeric to the previously reported familial microdeletion XLP-D.  相似文献   

20.
We identified two mutations in the CYP19 gene responsible for aromatase deficiency in an 18-year-old 46,XX female with ambiguous external genitalia at birth, primary amenorrhea and sexual infantilism, and polycystic ovaries. The coding exons, namely exons II-X, of the CYP19 gene were amplified by PCR from genomic DNA and sequenced directly. Direct sequencing of the amplified DNA from the patient revealed two single-base changes, at bp 1303 (C-->T) and bp 1310 (G-->A) in exon X, which were newly found missense mutations and resulted in codon changes of R435C and C437Y, respectively. Subcloning followed by sequencing confirmed that the patient is a compound heterozygote. The results of restriction fragment length polymorphism analysis and direct sequencing of the amplified exon X DNA from the patient's mother indicate maternal inheritance of the R435C mutation. Transient expression experiments showed that the R435C mutant protein had approximately 1.1% of the activity of the wild type, whereas C437Y was totally inactive. Cysteine-437 is the conserved cysteine in the heme-binding region believed to serve as the fifth coordinating ligand of the heme iron. To our knowledge, this patient is the first adult to have described the cardinal features of a syndrome of aromatase deficiency. Recognition that such defects exist will lead to a better understanding of the role of this enzyme in human development and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号