首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The steady shear flow properties of dispersions of a new potential hydrocolloid, sage seed gum (SSG), were determined as a function of concentration (0.5–2% w/w), and temperature (20–50 °C). SSG dispersions exhibited strong shear-thinning behavior at all conditions tested, which was even more pronounced than commercial hydrocolloids like xanthan, guar gum and locust bean gum. Different time-independent rheological models were used to fit the experimental data, although the Herschel–Bulkley model (H–B) was found the best model to describe steady shear flow behavior of SSG. An increase in gum concentration led to a large increase in yield stress and consistency coefficient values, whereas there was no definite trend with an increase in temperature. On the other hand, the above-mentioned increases in concentration and temperature did not yield a clear evolution of the shear-thinning characteristics of SSG dispersions. An Arrhenius-type model was also used to describe the effect of temperature. The activation energy (Ea) appeared in the range of 3949–16384 J/mol, as concentration increased from 0.5 to 2%, at a shear rate of 100 s−1. The yield stress values estimated by viscoplastic rheological models were much higher than the data determined by stress ramp method. Apparent viscosity of SSG surpassed many commercial hydrocolloids such as guar gum, locust bean gum, Tara gum, fenugreek gum and konjac gum at the same conditions, which suggest it as a very good stabilizer in food formulations.  相似文献   

2.
Xanthan and locust bean gums are polysaccharides able to produce aqueous solutions with high viscosity and non‐Newtonian behaviour. When these solutions are mixed a dramatic increase on viscosity is observed, much greater than the combined viscosity of the separated polysaccharide solutions. In this work the influences of different variables on the viscosity of solutions of mixtures of xanthan/locust bean gum have been studied. Total polysaccharide concentration, xanthan and locust bean ratio on mixture and temperature at which the gum was dissolved (dissolution temperature) for both xanthan and locust bean gums have been considered. Under these different operational mixture conditions shear rate and time have also been considered to describe the rheological behaviour of the solutions studied. The high viscosity increase observed in these mixtures is due to the interaction between xanthan gum and locust bean gum molecules. This interaction takes place between the side chains of xanthan and the backbone of the locust bean gum. Both xanthan molecule conformation in solution – tertiary structure – and locust bean gum structure show great influence on the final viscosity of the solution mixtures. Xanthan conformation changes with temperature, going from ordered structures to disordered or chaotic ones. Locust bean gum composition changes with dissolution temperature, showing a dissolved galactose/mannose ratio reduction when temperature increases, ie the smooth regions – zones without galactose radicals – are predominantly dissolved. The highest viscosity was obtained for the solution mixture with a total polysaccharide concentration of 1.5 kg m−3 and a xanthan/locust ratio of 2:4 (w/w) and when xanthan gum and locust bean gum were dissolved at 40°C and 80°C, respectively. © 1999 Society of Chemical Industry  相似文献   

3.
Rheological properties such as flow behaviour, viscosity, viscoelasticity, and thixotropy of solutions of β-glucan purified from barley fibre concentrate and twelve commonly used food gums, alone and in combinations, were characterised using an oscillatory rheometer. Pure gums and gum combinations were evaluated at 0.5% and 0.75% (w/w) total gum concentration in aqueous medium, whereas the β-glucan/gum ratios were kept at 90/10 or 80/20 (w/w). Viscosity synergism was observed for β-glucan solutions in combination with xanthan, iota-carageenan, and carboxymethyl cellulose. However, barley β-glucan blends with lambda-carageenan, Konjac, high- and low-methoxyl pectin, microcrystalline cellulose, alginate, and gum arabic showed marked lowering of the viscosity compared to β-glucan alone. In addition, β-glucan/xanthan gum blends demonstrated improved shear tolerance compared to xanthan dispersions alone, and soft gel transformation. Non-thixotropic behaviour was observed for 0.5 and 0.75% (w/w) β-glucan dispersions and its gum combinations. None of the gum combinations studied demonstrated thixotropy.  相似文献   

4.
The viscosity of diluted guar gum solutions and the viscosity of xanthan and guar gum mixture solutions have been studied. Guar gum solutions showed pseudoplastic behaviour. Apparent viscosity increased with gum concentration and decreased with the temperature at which viscosity was measured. A maximum in the plot of viscosity versus increasing dissolution temperature was observed at 60 °C. This behaviour was related to differences in molecular structure of the polymers solved at different temperatures. Mixtures of xanthan and guar gum showed a higher combined viscosity than that occurring in each separate gum. This synergistic interaction was affected by the gum ratio in the mixture and dissolution temperature of both gums. The effect of polysaccharide concentration (1.0, 1.5 and 2.0 kg m−3), xanthan/guar gum ratio (1/5, 4/2, 3/3, 4/2 and 5/1) and dissolution temperature (25, 40, 60 and 80 °C for both gums) on the viscosity of solutions of mixtures were studied. The highest viscosities were observed when 2.0 kg m−3 gum concentration was used together with a ratio of xanthan/guar gum of 3/3 (w/w) and dissolution temperature of 40 and 80 °C for xanthan and guar gum, respectively. © 2000 Society of Chemical Industry  相似文献   

5.
BACKGROUND: Lallemantia royleana (Balangu) is a mucilaginous endemic plant which is grown in different regions of world. The flow behaviour of Balangu seed extract (BSE) and its mixture with xanthan, guar and locust bean gums at 1:3, 1:1 and 3:1 ratios, in addition to control samples (0% BSE), were evaluated. To describe the rheological properties of samples, the power law model was fitted on apparent viscosity–shear rate data. To evaluate the interaction between BSE and selected hydrocolloids in dilute solutions, the relative viscosity was also investigated. RESULTS: There was no significant difference between the consistency coefficient of guar and locust bean solutions and their blends substituted with 250 g kg?1 BSE. The BSE–xanthan mixture at 1:3 and 1:1 ratios had consistency index equal to xanthan solution. BSE–locust bean gum at all ratios, BSE–xanthan at 1:3 ratio and BSE–guar gum at 1:1 and 3:1 ratios indicated relative viscosity lower than values calculated assuming no interaction. The intrinsic viscosity value of BSE was determined 3.50 dL g?1. CONCLUSION: The apparent viscosities of BSE, selected hydrocolloids and their blends were the same at a shear rate of 293 s?1 and the commercial gums can be substituted by 250 g kg?1 and 500 g kg?1 BSE. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
In this study, rheological properties of several food hydrocolloids (carrageenan, pectin, gelatin, starch and xanthan) were evaluated using a rotational viscometer at three concentrations (1–6%, depending on the type of hydrocolloid) and four temperatures (20, 40, 60 and 80°C). Samples were subjected to a programmed shear rate increasing linearly from 0 to 300 s−1 in 3 min, followed by a steady shear at 300 s−1 for 10 min and finally a linearly decreasing shear rate from 300 s−1 to 0 in 3 min. Experiments were performed in duplicate. In general, the power law model fitted most of the experimental results. Xanthan gum and carrageenan (at 20oC) were exceptions, characterized by a yield stress and hence the rheograms were fitted with the Herschel-Bulkley model. Furthermore, gelatin showed a Newtonian behavior. Three models (power, exponential and polynomial) were used to evaluate the concentration effect on apparent viscosity. Arrhenius model was used to describe the temperature effect. Among the samples, carrageenan showed the most temperature dependency and xanthan gum, the least.  相似文献   

7.
The flow properties of the fluid portion of fruit fillings were assessed to investigate the effects of gums. Results indicated that the shear rate–shear stress relations of the fluid portion of commercial fruit fillings and the model fillings made of waxy corn starch, fructose, citrate buffer, and a gum which could be guar gum, locust bean gum, CMC, xanthan gum or κ-carrageenan, fit well into the Herschel–Bulkley equation for pseudoplastic fluids. The fluid portion of the commercial fruit fillings was characterized with a yield stress between 39–51 Pa, a consistency index between 52–104 Pa·sn, and a flow index (n) around 0.4. In addition, the shear rate–shear stress relations could be fitted into a modified Herschel–Bulkley equation with a flow index fixed at 0.4. Addition of guar gum, locust bean gum and CMC increased while xanthan gum and κ-carrageenan decreased the consistency and flow indices in the modified Herschel–Bulkley equation. The effect of gum addition on the apparent viscosity of model fillings varies with the type of gum, amount of addition, and shear rate.  相似文献   

8.
Rheological properties of solutions prepared using xanthan (XG), locust bean (LBG) or sodium carboxymethyl cellulose (CMC) gums, and their binary mixtures were studied. The influence of shear rate, total gum content, measurement time and temperature on the apparent viscosity was investigated. In the binary mixtures, the presence of different gum ratios at several total gum content was also analysed. XG solutions were always the most stable, providing high viscosity values which rose notably with increasing gum content. XG/LBG and CMC/XG mixtures depicted high values of viscosity for very low gum amounts. Viscosity did not change with measurement time in mixtures containing XG, whereas varied with measurement temperature. This variation was lower for samples with larger total gum content. The viscosity was also modified when different gum ratios were tested. A mathematical model was proposed to evaluate the combined effect of temperature, concentration and shear rate on the apparent viscosity.  相似文献   

9.
Sugars and hydrocolloids are used in starch-based product formulations during processing for improving the final quality of foods. Effect of sucrose (0–30%) on thermal and pasting properties of 5% w/w tapioca starch (TS) – xanthan gum (Xan) mixtures was investigated using differential scanning calorimeter (DSC), rapid visco-analyser (RVA) and rheometer. Sucrose increased gelatinization temperatures and enthalpies of TS and TS/Xan dispersions. RVA pasting temperatures, peak viscosity, final viscosity, breakdown and setback values of TS/Xan mixtures increased with increasing sucrose concentration (< 0.05). Addition of sucrose in all TS/Xan pastes increased the rate of viscosity breakdown during RVA heating under constant shear and temperature. Setback values of TS/Xan pastes increased with sucrose addition but decreased significantly with increasing Xan content. Xan enhanced thermal stability of steady shear viscosities to TS pastes with and without sucrose. Linear regression from pasting profile revealed a good relationship for predicting final viscosity. These results could facilitate the development of TS-based products with improved thermal and pasting properties.  相似文献   

10.
Flow curves of aqueous dispersions of tragacanth gum (T) with sucrose and glucose at different temperatures were determined using a controlled‐stress rheometer. The effect of sodium chloride without or with sucrose (at the highest content) on the rheology of T dispersions was evaluated. The presence of sucrose and glucose promoted a noticeable enhancement impact on the apparent viscosity of aqueous T dispersions, which depended on sugar type/content, shear rate and temperature. In all cases, the glucose addition led to the largest enhanced viscosities at low shear rates (<10 s?1) and temperature. The joint action of sugar and salt exhibited a notable effect on apparent viscosity at low shear rates, softening the strong shear‐thinning behaviour of T samples. Flow curves of T in the presence of sugars were satisfactorily described by the Cross‐Williamson model, being semi‐empirical correlations of the model parameters with ingredients content and temperature stablished.  相似文献   

11.
The effect of xanthan gum at different concentrations (0.2–0.6% w/w) on the rheological properties of sweet potato starch (SPS) pastes was evaluated under steady and dynamic shear conditions. The presence of xanthan resulted in an increase in the consistency index and vane yield stress of SPS. The effect of temperature on the apparent viscosity of SPS–xanthan mixtures is well described by the Arrhenius equation. Dynamic moduli (G′, G″, and η*) values of the mixtures increased with an increase in xanthan concentration while the tan δ values decreased. The addition of xanthan appeared to contribute to the elastic properties of the weak network of the SPS pastes. The structure development rate constant (k) of gelation during ageing was strongly influenced by the presence of xanthan. This suggests that the phase separation process caused by the incompatibility phenomena between the amylose component in starch and xanthan can increase the elastic characteristics of the SPS–xanthan mixtures.  相似文献   

12.
Barley is high in β-glucan, a soluble fiber component. Effects of extraction temperature (40 55 C) and pH (7.0 10.0) on recovery, purity and functional properties of β-glucan were investigated on whole Condor barley flour. At pH 7.0, 8.0 and 55°C, 86.5% of the β-glucan in the feed flour was recovered in the gum product with 89.1% (d.w.b.) purity. β-Glucan content increased (p < 0.05) with temperature but not with pH. Apparent viscosity of 1% (w/v) dispersions of β-glucan gum from pH 7.0 increased (p < 0.05) with extraction temperature at constant shear rate and viscosity decreased slightly with increasing shear rate. Whippability and foam stability of gums from pH 8.0 and 45°C were maximum. Emulsions prepared with β-glucan gum from pH 7.0 and 55@c were 63% stable after centrifugation. Barley β-glucan shows great potential as a thickener or stabilizer.  相似文献   

13.
Wheat starch dispersions of 8–15% concentrations were cooked in the temperature range 60°–75°C for periods up to 75 min. Viscosities of the cooked dispersions were determined in a rotational viscometer at 60°C and 23°C. No yield points were observed in the viscosity behavior at 60°C. At 23°C, viscosity measurements showed yield points in the range 200–3.000 dynes/cm2 dependent on cook time, cook temperature, concentration and cooling history. Plots of log viscosity versus log shear stress were useful in establishing the existence of yield points where the usual plots of shear rate versus shear stress were ambiguous.  相似文献   

14.
The steady and dynamic shear rheological properties of rice starches dispersed in dimethyl sulfoxide (DMSO) solution (90% DMSO‐10% water) were evaluated at various concentrations (7, 8, 9 and 10%, w/w). Rice starch dispersions in DMSO solution at 25°C showed a shear‐thinning flow behavior (n=0.44–0.60) and their consistency index (K) and apparent viscosity (ηa,100) increased with the increase in concentration. The apparent viscosity over the temperature range of 25–70°C obeyed the Arrhenius temperature relationship, indicating that the magnitudes of activation energy (Ea) were in the range of 11.7–12.7 kJ/mol. The Carreau model provided better fit on the shear rate‐apparent viscosity data than the Cross model. Dynamic frequency sweep test showed that both storage modulus (G′) and loss modulus (G′′) of rice starch dispersions increased with the increase in concentration. G′′ showed a higher dependence on frequency (ω) compared to G′ due to the higher G′′ slopes. All rice starch dispersions showed the plateau of G′ at high frequencies. Intrinsic viscosity of rice starch dispersions in DMSO was 104.1 mL/g.  相似文献   

15.
Rheological properties of cashew gum (CG) and gum arabic (AR), the exudate polysaccharides from Anacardium occidentale L. and Acacia, at different solutions (0.4–50% w/v) were studied. The intrinsic viscosity, [η], of CG in water at 20°C was ≈0.1 dl g−1, while that of AR was ≈0.6 dl g−1. The apparent viscosity of the unheated and the heated (at 80°C for 30 min) CG and AR solutions showed a progressive increase with increasing concentration. The flow curves of blends with equal viscosity solutions of AR/CG: 25/75, 50/50 and 75/25, showed no major interaction. The apparent viscosity (ηa) vs. shear rate data for both the AR and CG dispersions (4–50% w/v) exhibited shear-thinning characteristics at low shear rates (< about 10 s−1) and Newtonian plateaus at shear rates >100 s−1, and the Sisko model described well the ηa vs. data of all the dispersions.  相似文献   

16.
Different xanthan gum concentrations (0–0.8 %) were tested, and the rheological properties of ice cream mixes were characterized as linear viscoelastic solids. Ostwald de Waele was successfully used to fit the steady shear data of ice cream mixes exhibiting a pseudoplastic flow (R 2?>?0.982). The samples with xanthan gum were characterized as strong gel-like macromolecular dispersions with G′ much greater than G″ but without a cross-point in the whole range of frequency applied. Cox–Merz rule was not applicable to the ice cream mixes. Steady and dynamic rheology of the ice cream mixes changed with increasing xanthan gum concentration. Besides, the four-component Burger model consisted of the association in series of the Maxwell model and the Kelvin–Voigt model was used to characterize the viscoelasticity. It was also found that the final percentage recovery parameters; J SM, J , J KV, and %R (compliance of Maxwell spring and dashpot, Kelvin–Voigt element and R, respectively) of the ice cream mixes were dramatically changed by the xanthan gum concentration, increasing the internal structure parameters G 0, G 1, η 0, and η 1 (elastic moduli of Maxwell and Kelvin–Voigt springs and corresponding dashpot viscosities, respectively).  相似文献   

17.
A four parameter semi-empirical model has been developed using the fractional derivative (FD) theory, which consists of applying a mathematical operator to a constitutive equation. The Fourier transform approach is used to obtain the analytical function of the derived model. Since a single four parameter model can predict both storage modulus (G') and dynamic viscosity (η'), the developed FD model was appropriate in describing the viscoelastic properties of selected food gum dispersions, food gum mixtures and gellan gel. This fractional derivative model shows good simulation capability for selected food gum dispersions (0.5% xanthan gum, 0.5 and 0.75% locust bean gum, and 0.5, 0.75, and 1.0% guar gum), 0.6% gellan gel, and binary mixtures of carrageenan and guar gum, car-rageenan and xanthan, as well as guar and xanthan gum.  相似文献   

18.
Steady shear flow behavior of basil seed gum (BSG) was investigated between 0.5% and 2% (wt/wt) concentration and temperatures of 5-85 °C. BSG showed shear thinning behavior at all concentrations and temperatures. The Herschel-Bulkley model was employed to characterize flow behavior of BSG solutions at 0.1-1000 s−1 shear rate. The pseudoplasticity of BSG increased markedly with concentration. Flow behavior of 1% BSG indicated a higher viscosity of this gum at low shear rates compared to xanthan, konjac and guar gum at similar concentration. The activation energy of BSG quantified using an Arrhenius equation increased from 4.9 × 103 to 8.0 × 103 J mol−1 as concentration changed from 0.5% to 2% wt/wt. This indicated a heat-resistant nature of BSG. Increasing the apparent viscosity of BSG as temperature increase from 60 °C showed a sol-gel behavior of BSG based on dynamic oscillatory measurements. The static yield stress was obvious between shear rates 0.001-0.1 s−1 (9.98 Pa for 1% BSG at 20 °C). The existence of the yield stress, high viscosity at low shear rates and pseudoplastic behavior of BSG make it a good stabilizer in some food formulations such as mayonnaise and salad dressing.  相似文献   

19.
The effects of adding non-starch polysaccharides (xanthan gum, guar gum, konjac glucomannan, and pectin) on the starch digestibility and viscosity of raw starch suspensions in a mixed system were determined. Each type of polysaccharide was added to high-amylose corn starch suspensions at defined concentrations. High-amylose rice starch suspensions mixed with xanthan and guar gum were prepared for comparison. The extent of starch digestibility was determined by an in vitro method, and the glucose diffusibility from the dialysis tube in the presence of polysaccharides was measured. The added polysaccharides were observed to decrease the starch digestibility in a mixed system. When compared at the same concentration, xanthan gum showed the most pronounced suppressive effect on starch digestibility and glucose diffusibility from the dialysis tube. The addition of polysaccharides increased the viscosity of the starch suspension. Significant relations were found between the extent of starch digestibility and the apparent viscosity at low shear rate.  相似文献   

20.
Mixtures of starch, xanthan gum and either polyvinyl alcohol, epichlorohydrin, valeric acid or adipoyl chloride were extruded. Properties of extrudates including apparent viscosity, water solubility, water absorption indices and exrudate expansion were measured for different proportions of xanthan gum, 70% amylose starch (with or without irradiation) and chemical agents. Extrusion with chemical agents and irradiation changed physical properties of both starch and xanthan gum. Expansions of extrudates were higher than that of starch. Viscosity of extrudates increased with xanthan gum concentration. The addition of 1% (w/w) polyvinyl alcohol had the greatest effect of the chemical agents. Irradiation increased the apparent viscosity of starchxanthan gum mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号