首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates scheduling job shop problems with sequence-dependent setup times under minimization of makespan. We develop an effective metaheuristic, simulated annealing with novel operators, to potentially solve the problem. Simulated annealing is a well-recognized algorithm and historically classified as a local-search-based metaheuristic. The performance of simulated annealing critically depends on its operators and parameters, in particular, its neighborhood search structure. In this paper, we propose an effective neighborhood search structure based on insertion neighborhoods as well as analyzing the behavior of simulated annealing with different types of operators and parameters by the means of Taguchi method. An experiment based on Taillard benchmark is conducted to evaluate the proposed algorithm against some effective algorithms existing in the literature. The results show that the proposed algorithm outperforms the other algorithms.  相似文献   

2.
This paper presents a hybrid approach based on the integration between a genetic algorithm (GA) and concepts from constraint programming, multi-objective evolutionary algorithms and ant colony optimization for solving a scheduling problem. The main contributions are the integration of these concepts in a GA crossover operator. The proposed methodology is applied to a single machine scheduling problem with sequence-dependent setup times for the objective of minimizing the total tardiness. A sensitivity analysis of the hybrid approach is carried out to compare the performance of the GA and the hybrid genetic algorithm (HGA) approaches on different benchmarks from the literature. The numerical experiments demonstrate the HGA efficiency and effectiveness which generates solutions that approach those of the known reference sets and improves several lower bounds.  相似文献   

3.
4.
In this paper we study a problem of sequencing jobs in a machine with programmed preventive maintenance and sequence-dependent setup times. To the authors’ knowledge, this problem has not been treated as such in the operations research literature. Computational experiments show that it is very hard to solve the problem by exact methods. Therefore, the contribution of this paper is to design and implement a solution approach based on metaheuristic procedures. The proposed method finds high quality solutions in very short computational times.  相似文献   

5.
This paper investigates a single machine scheduling problem with strong industrial background, named the prize-collecting single machine scheduling problem with sequence-dependent setup times. In this problem, there are n candidate jobs for processing in a single machine, each job has a weight (or profit) and a processing time, and during processing a symmetric sequence-dependent setup time exists between two consecutive jobs. Since there is a maximum available time limitation of the machine, it is generally impossible to complete the processing of all the candidate jobs within this time limitation. The objective is to find a job processing sequence of maximal job weights (or profits) over a subset of all candidate jobs whose makespan does not exceed the given time limitation. This problem can be considered as an application of the orienteering problem (OP) in the field of discrete manufacturing. We formulate this problem as a mixed integer linear programming (MILP) model and propose a hybrid metaheuristic combining the structures of scatter search and variable neighborhood search. Computational results on a large number of randomly generated instances with different structures show that the proposed hybrid metaheuristic outperforms CPLEX and two metaheuristics proposed for the OP.  相似文献   

6.
This paper introduces and compares three different formulations of a production scheduling problem with sequence-dependent and time-dependent setup times on a single machine. The setup is divided into two parts: one that can be performed at any time and another one that is restricted to be performed outside of a given time interval. As a result, the setup time between two jobs is a function of the completion time of the first job. The problem can be formulated as a time-dependent traveling salesman problem, where the travel time between two nodes is a function of the departure time from the first node. We show that the resulting formulation can be strengthened to provide better linear programming relaxation lower bounds. We also introduce several families of valid inequalities which are used within a branch-and-cut algorithm. Computational experiments show that this algorithm can solve some instances with up to 50 jobs within reasonable computing times.  相似文献   

7.
This paper considers a single machine capacitated lot-sizing and scheduling problem. The problem is to determine the lot sizes and the sequence of lots while satisfying the demand requirements and the machine capacity in each period of a planning horizon. In particular, we consider sequence-dependent setup costs that depend on the type of the lot just completed and on the lot to be processed. The setup state preservation, i.e., the setup state at the end of a period is carried over to the next period, is also considered. The objective is to minimize the sum of setup and inventory holding costs over the planning horizon. Due to the complexity of the problem, we suggest a two-stage heuristic in which an initial solution is obtained and then it is improved using a backward and forward improvement method that incorporates various priority rules to select the items to be moved. Computational tests were done on randomly generated test instances and the results show that the two-stage heuristic outperforms the best existing algorithm significantly. Also, the heuristics with better priority rule combinations were used to solve case instances and much improvement is reported over the conventional method as well as the best existing algorithm.  相似文献   

8.
Electromagnetism-like mechanism (EM) is a novel meta-heuristic, inspired by the attraction–repulsion mechanism of electromagnetic theory. There are very few applications of EM in scheduling problems. This paper presents a discrete EM (DEM) algorithm for minimizing the total weighted tardiness in a single-machine scheduling problem with sequence-dependent setup times. Unlike other discrete EM algorithms that use a random key method to deal with the discreteness, the proposed DEM algorithm employs a completely different approach, with an attraction–repulsion mechanism involving crossover and mutation operators. The proposed algorithm not only accomplishes the intention of an EM algorithm but also can be applied in other combinatorial optimization problems. To verify the algorithm, it is compared with a discrete differential evolution (DDE) algorithm, which is the best meta-heuristic for the considered problem. Computational experiments show that the performance of the proposed DEM algorithm is better than that of the DDE algorithm in most benchmark problem instances. Specifically, 30 out of 120 aggregated best-known solutions in the literature are further improved by the DEM algorithm, while other another 70 instances are solved to an equivalent degree.  相似文献   

9.
We present a systematic comparison of hybrid evolutionary algorithms (HEAs), which independently use six combinations of three crossover operators and two population updating strategies, for solving the single machine scheduling problem with sequence-dependent setup times. Experiments show the competitive performance of the combination of the linear order crossover operator and the similarity-and-quality based population updating strategy. Applying the selected HEA to solve 120 public benchmark instances of the single machine scheduling problem with sequence-dependent setup times to minimize the total weighted tardiness widely used in the literature, we achieve highly competitive results compared with the exact algorithm and other state-of-the-art metaheuristic algorithms in the literature. Meanwhile, we apply the selected HEA in its original form to deal with the unweighted 64 public benchmark instances. Our HEA is able to improve the previous best known results for one instance and match the optimal or the best known results for the remaining 63 instances in a reasonable time.  相似文献   

10.
In this paper, we introduce a new and practical two-machine robotic cell scheduling problem with sequence-dependent setup times (2RCSDST) along with different loading/unloading times for each part. Our objective is to simultaneously determine the sequence of robot moves and the sequence of parts that minimize the total cycle time. The proposed problem is proven to be strongly NP-hard. Using the Gilmore and Gomory (GnG) algorithm, a polynomial-time computable lower bound is provided.  相似文献   

11.
Supply chain-oriented scheduling problems have received recent recognition among production research scholars due to their ability in integrating production planning and control across manufacturing systems. This study contributes to the literature of the distributed scheduling problems developing an original Mixed-Integer Linear Programming (MILP) formulation to the Distributed Two-Stage Assembly Flowshop Scheduling Problem with Sequence-Dependent Setup Times (DTSAFSP-SDSTs). Besides, the Iterated Greedy algorithm is extended to effectively solve this relatively complex production scheduling situation considering the makespan as the optimization criterion. Extensive numerical tests and statistical analyses are conducted to evaluate the effectiveness of the developed solution algorithm. Results showed that the Improved Iterated Greedy (IIG) algorithm yields the best solution in nearly all of the large-scale instances. The statistical test of significance confirmed that IIG is superior to the current-best-performing algorithm. This study contributes to the transition from standalone optimization to integrated production planning and control of distributed manufacturing systems.  相似文献   

12.
In this paper, we addressed the problem of scheduling jobs in a no-wait flow shop with sequence-dependent setup times with the objective of minimizing the total flow time. As this problem is well-known for being NP-hard, we present a new constructive heuristic, named QUARTS, in order to obtain good approximate solutions in a short CPU time. QUARTS breaks the problem in quartets in order to minimize the total flow time. The method was tested with other literature methods: BAH and BIH by Bianco et al. (1999) [6], TRIPS, by Brown et al. (2004) [7] and the metaheuristic Iterated Greedy with Local Search proposed by Ruiz and Stützle (2007) [25]. The computational results showed that IGLS obtained the best results and QUARTS presented the best performance regarding other constructive heuristics.  相似文献   

13.
Gupta and Magnusson [The capacitated lot-sizing and scheduling problem with sequence-dependent setup costs and setup times. Computers and Operations Research 2005;32(4):727–47] develop a model for the single machine capacitated lot-sizing and scheduling problem (CLSP) with sequence dependent setup times and setup costs, incorporating all the usual features of setup carryovers. In this note we show that this model does not avoid disconnected subtours. A new set of constraints is added to the model to provide an exact formulation for this problem.  相似文献   

14.
This paper addresses the flow shop batching and scheduling problem where sequence-dependent family setup times are present and the objective is to minimize makespan. We consider violating the group technology assumption by dividing product families into batches. In order to reduce setup times, inconsistent batches are formed on different machines, which lead to non-permutation schedules. To the best of our knowledge, this is the first time that the splitting of job families into inconsistent batches has been considered in a flow shop system. A tabu search algorithm is developed which contains several neighbourhood functions, double tabu lists and a multilevel diversification structure. Compared to the state-of-the-art meta-heuristics for this problem, the proposed tabu search algorithm achieves further improvement when the group scheduling assumption is dropped. Also, various experiments conducted on the benchmark problem instances confirm the benefits of batching. Therefore, it will be prudent for the practitioners to consider adopting inconsistent batches and non-permutation schedules to improve their operational efficiency within a reasonable amount of computational effort.  相似文献   

15.
Consider the problem of scheduling a set of jobs to be processed exactly once, on any machine of a set of unrelated parallel machines, without preemption. Each job has a due date, weight, and, for each machine, an associated processing time and sequence-dependent setup time. The objective function considered is to minimize the total weighted tardiness of the jobs.This work proposes a non-delayed relax-and-cut algorithm, based on a Lagrangean relaxation of a time indexed formulation of the problem. A Lagrangean heuristic is also developed to obtain approximate solutions.Using the proposed methods, it is possible to obtain optimal solutions within reasonable time for some instances with up to 180 jobs and six machines. For the solutions for which it is not possible to prove optimality, interesting gaps are obtained.  相似文献   

16.
This paper examines the parallel-machine capacitated lot-sizing and scheduling problem with sequence-dependent setup times, time windows, machine eligibility and preference constraints. Such problems are quite common in the semiconductor manufacturing industry. In particular, this paper pays special attention to the chipset production in the semiconductor Assembly and Test Manufacturing (ATM) factory and constructs a Mixed Integer Programming (MIP) model for the problem. The primal problem is decomposed into a lot-sizing subproblem and a set of single-machine scheduling subproblems by Lagrangian decomposition. A Lagrangian-based heuristic algorithm, which incorporates the simulated annealing algorithm aimed at searching for a better solution during the feasibility construction stage, is proposed. Computational experiments show that the proposed hybrid algorithm outperforms other heuristic algorithms and meets the practical requirement for the tested ATM factory.  相似文献   

17.
This paper presents a new mixed-integer goal programming (MIGP) model for a parallel-machine scheduling problem with sequence-dependent setup times and release dates. Two objectives are considered in the model to minimize the total weighted flow time and the total weighted tardiness simultaneously. Due to the complexity of the above model and uncertainty involved in real-world scheduling problems, it is sometimes unrealistic or even impossible to acquire exact input data. Hence, we consider the parallel-machine scheduling problem with sequence-dependent set-up times under the hypothesis of fuzzy processing time's knowledge and two fuzzy objectives as the MIGP model. In addition, a quite effective and applicable methodology for solving the above fuzzy model are presented. At the end, the effectiveness of the proposed model and the denoted methodology is demonstrated through some test problems.  相似文献   

18.
One of the scheduling problems with various applications in industries is hybrid flow shop. In hybrid flow shop, a series of n jobs are processed at a series of g workshops with several parallel machines in each workshop. To simplify the model construction in most research on hybrid flow shop scheduling problems, the setup times of operations have been ignored, combined with their corresponding processing times, or considered non sequence-dependent. However, in most real industries such as chemical, textile, metallurgical, printed circuit board, and automobile manufacturing, hybrid flow shop problems have sequence-dependent setup times (SDST). In this research, the problem of SDST hybrid flow shop scheduling with parallel identical machines to minimize the makespan is studied. A novel simulated annealing (NSA) algorithm is developed to produce a reasonable manufacturing schedule within an acceptable computational time. In this study, the proposed NSA uses a well combination of two moving operators for generating new solutions. The obtained results are compared with those computed by Random Key Genetic Algorithm (RKGA) and Immune Algorithm (IA) which are proposed previously. The results show that NSA outperforms both RKGA and IA.  相似文献   

19.
This study proposes an exact algorithm for the single-machine total weighted tardiness problem with sequence-dependent setup times. The algorithm is an extension of the authors' previous algorithm for the single-machine scheduling problem without setup times, which is based on the SSDP (Successive Sublimation Dynamic Programming) method. In the first stage of the algorithm, the conjugate subgradient algorithm or the column generation algorithm is applied to a Lagrangian relaxation of the original problem to adjust multipliers. Then, in the second stage, constraints are successively added to the relaxation until the gap between lower and upper bounds becomes zero. The relaxation is solved by dynamic programming and unnecessary dynamic programming states are eliminated to suppress the increase of computation time and memory space. In this study a branching scheme is integrated into the algorithm to manage to solve hard instances. The proposed algorithm is applied to benchmark instances in the literature and almost all of them are optimally solved.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号