首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以癸二酸、丁二酸为二元酸,丁二醇为二元醇,通过熔融共聚的方式合成了聚(癸二酸丁二醇酯丁二酸丁二醇酯)无规共聚物(SE10)和聚丁二酸丁二醇(PBS),并通过酶解实验研究了相对分子质量、结构、表面形态的变化。通过红外光谱、差示量热扫描仪、偏光显微镜、凝胶色谱和扫描电镜对二者降解前后性能进行了研究,相比PBS,SE10晶体直径较小,晶体结构形态变模糊,结晶度由68.0%下降为45.7%,熔点由115.23℃下降为92.40℃。90d后SE薄膜的质量损失率达到63%,珚Mw由34700降为11500,而PBS质量损失率为27%,珚Mw由49000降为33000。表明癸二酸的引入降低了PBS的结晶性能,提高了其降解性能。  相似文献   

2.
以1,4-丁二酸(SA)和过量的1,4-丁二醇(BD)为反应物,通过熔融缩聚制备了羟基封端聚丁二酸丁二醇酯齐聚物(OH-PBS-OH),以甲氧基聚乙二醇(Me OPEG)与丁二酸酐进行半酯化得到含端羧基的预聚物,再用二氯亚砜对预聚物进行活化,得到含酰氯端基的预聚物(Me OPEG-COCl);以Me OPEG-COCl与OH-PBS-OH为反应物,通过溶液法合成聚乙二醇-聚丁二酸丁二醇酯-聚乙二醇(Me OPEG-PBS-PEGOMe)嵌段共聚物。利用红外光谱、核磁共振、差示扫描量热、广角X射线衍射、偏光显微镜等手段对共聚物的结构、结晶性能和酶降解性能进行研究。结果表明,Me OPEG-PBS-PEGOMe嵌段共聚物中,聚乙二醇(PEG)链段的引入未改变聚丁二酸丁二醇酯(PBS)链段的晶体结构,但结晶形态由球晶转变为麦穗状晶体;同PBS比较,Me OPEG-PBS-PEGOMe嵌段共聚物的结晶速率降低,酶降解速率加快。  相似文献   

3.
以1,4-丁二酸(SA)和过量的1,4-丁二醇(BD)为反应物,通过熔融缩聚制备了羟基封端聚丁二酸丁二醇酯齐聚物(OH-PBS-OH),以甲氧基聚乙二醇(Me OPEG)与丁二酸酐进行半酯化得到含端羧基的预聚物,再用二氯亚砜对预聚物进行活化,得到含酰氯端基的预聚物(Me OPEG-COCl);以Me OPEG-COCl与OH-PBS-OH为反应物,通过溶液法合成聚乙二醇-聚丁二酸丁二醇酯-聚乙二醇(Me OPEG-PBS-PEGOMe)嵌段共聚物。利用红外光谱、核磁共振、差示扫描量热、广角X射线衍射、偏光显微镜等手段对共聚物的结构、结晶性能和酶降解性能进行研究。结果表明,Me OPEG-PBS-PEGOMe嵌段共聚物中,聚乙二醇(PEG)链段的引入未改变聚丁二酸丁二醇酯(PBS)链段的晶体结构,但结晶形态由球晶转变为麦穗状晶体;同PBS比较,Me OPEG-PBS-PEGOMe嵌段共聚物的结晶速率降低,酶降解速率加快。  相似文献   

4.
以丁二酸、丁二醇和1,3- 丙二醇(1,3-PDO)为原料,采用熔融缩聚法,合成了-系列新型可降解的聚丁二酸丁二醇酯/丁二酸1,3- 丙二醇酯共聚物 P(BS-co-PDO).选用红外光谱仪和核磁共振仪对共聚物的化学结构进行了表征.研究了1,3-PDO的添加量对共聚物的相对分子质量、热性能、结晶性能、力学性能、透光率以及降解性能的影响.结果表明:随着1,3-PDO添加量的增加,共聚物的分子量、熔点和结晶度呈降低趋势;相对于聚丁二酸丁二醇酯而言,引入1,3-PDO组分的共聚物的热性能提高,柔韧性增强,断裂伸长率增大,透光率提高;降解测试结果表明,1,3-PDO组分含量越多,共聚物的降解性能越好.  相似文献   

5.
<正>一、我国生物基材料产业发展现状与问题在几个五年计划和八六三计划支持下,我国生物基材料包括聚羟基脂肪酸酯(PHA)、聚乳酸(PLA)、丁二酸丁二醇共聚物(PBS)、二氧化碳共聚物(PPC)、对苯二甲酸1,3-丙二醇共  相似文献   

6.
聚(丁二酸丁二醇酯丁二酸环己烷二甲醇酯)的合成与表征   总被引:4,自引:0,他引:4  
用熔融缩聚法合成了一系列聚(丁二酸丁二醇酯丁二酸环己烷二甲醇酯)的无规共聚物。用FT-IR,1H-NMR,DSC,TGA,XRD及水降解测试等方法表征了材料的结构与性能。通过DSC和TGA分析得到产物的熔点虽然较聚丁二酸丁二醇酯(PBS)有所降低,但是热分解温度却得到了提高;XRD测试结果表明,共聚物的晶体结构并没有发生改变;水降解测试结果表明,共聚物较PBS的降解速率有所提高。  相似文献   

7.
文中以丁二酸、丁二醇和苄氧羰基保护的天冬氨酸为原料,通过熔融聚合法合成了聚(丁二酸丁二醇-co-CBz-天冬氨酸丁二醇)共聚酯(P(BS-co-BCD)),然后以Pd(10%(质量分数,下同))/C为催化剂高压氢化脱去保护基团得到含有活性氨基活性点的生物可降解聚(丁二酸丁二醇-co-天冬氨酸丁二醇)共聚酯(P(BS-co-BD))。利用凝胶渗透色谱(GPC)、红外光谱(FT-IR)、核磁共振波谱(NMR)等研究了共聚物的结构和性能。测试表明共聚酯的水接触角比聚丁二酸丁二醇酯(PBS)低,表明加入含有氨基活性点的天冬氨酸链段提高了材料的亲水性。  相似文献   

8.
合成了以聚丁二酸丁二醇酯(PBS)为硬段,聚四氢呋喃醚(PTMO,分子量1000g/mol)为软段的可生物降解嵌段共聚物。采用核磁共振氢谱(1H-NMR)、傅立叶变换红外光谱(FT-IR)、差示扫描量热法(DSC)、偏光显微镜(POM)和原子力显微镜(AFM)对嵌段共聚物的结构、耐热性能、结晶形态和表面形貌进行了分析。结果表明,合成的目标产物为PBS/PTMO嵌段共聚物,随软段PTMO含量的增加,PBS硬段结晶温度和熔融温度降低,晶体尺寸变小;当PTMO质量分数低于50%,PTMO以非晶态形式存在时,PBS硬段晶体与PBS均聚物一样呈现环带球晶特征;当PTMO质量分数超过50%时,PBS晶体细小,无明显的环带球晶特征,且分散在非晶相中。  相似文献   

9.
本文合成了以聚丁二酸丁二醇酯(PBS)为硬段,聚四氢呋喃醚(PTMO,相对分子质量1000)为软段的生物降解脂肪族聚醚酯热塑性弹性体,其中PTMO的质量分数为50%、60%、70%。采用核磁共振氢谱、差示扫描量热法、凝胶渗透色谱、力学性能测试对嵌段共聚物的结构、熔融行为、力学性能进行了表征。结果表明:合成的目标产物为PBS/PTMO嵌段共聚物;Mn和Mw分别达到5.0×104和13.0×104以上;软段PTMO的结晶温度(Tc)较低,分别为-17.9℃、-14℃和-17.4℃;而硬段的Tc较高,分别为54.6℃和46.3℃;合成的嵌段共聚物表现出热塑性弹性体的力学行为,拉伸强度分别为22 MPa、18 MPa和14 MPa;弹性恢复率性能测试表明合成的脂肪族聚醚酯热塑性弹性体具有较好的弹性恢复性能。  相似文献   

10.
用熔融缩聚法合成了一系列聚(丁二酸丁二醇酯癸二酸丁二醇酯)的无规共聚物(PBSu-co-PBSe)。通过核磁共振(1H-NMR),差示扫描量热(DSC),热重分析(TGA),X射线衍射(XRD)和酶降解测试等方法表征了材料的结构与性能。XRD测试结果表明,共聚酯的晶体结构随着癸二酸含量的增加发生了改变,并产生了共结晶行为;DSC分析得出,随着PBSe组分在共聚酯中含量的增大,产物的熔点(Tm)由84.8℃降低至46.7℃,然后升高至55.9℃,玻璃化温度(Tg)单调降低至-58.7℃;TGA分析表明,癸二酸的引入提高了聚酯的热稳定性;酶降解测试得出产物具有良好的生物降解性,当PBSe占共聚酯含量的40%时,产物具有最快的降解速率。  相似文献   

11.
高分子量聚丁二酸丁二醇酯的制备及性能研究   总被引:1,自引:0,他引:1  
以1,4-丁二醇和丁二酸为原料,通过加入少量的扩链剂,利用直接缩聚法在短时间内合成了高分子量的聚丁二酸丁二醇酯(PBS).采用GPC、DSC以及TGA等方法对产物进行了表征,同时研究了扩链剂的加入对聚合物性能的影响.结果表明,当扩链剂加入量为PBS预聚物的2.5%时,扩链产物的性能最佳,重均分子量由3万上升到17万,拉...  相似文献   

12.
以丁二酸、丁二醇、聚四氢呋喃醚(PTMO)和柠檬酸为原料,采用熔融缩聚法合成了微交联聚丁二酸丁二醇酯/聚四氢呋喃醚(c-PBS/PTMO)嵌段共聚物,其中PTMO质量分数为50%。采用核磁共振(1H-NMR)对其结构进行了表征;采用差示扫描量热(DSC)、乌氏黏度计和流变性能测试仪对其结晶熔融性能和流变力学行为进行了研究。研究表明,当加入的柠檬酸质量为PBS质量的1%时,聚合物凝胶含量为20.3%,特性黏数增加38%;使PBS硬段结晶熔融温度降低8.4℃,熔融焓、结晶焓和结晶度分别降低3.1 J/g、6.4 J/g和5.7%,但对PTMO软段影响较小;使嵌段共聚物的剪切储能模量和复数黏度提高,而损耗角tanδ降低。表明少量的柠檬酸的引入,有利于提高c-PBS/PTMO嵌段共聚物的熔体强度。  相似文献   

13.
用差示扫描量热法(DSC)和修正的Avrami方程研究了聚丁二酸乙二醇酯(PES)、聚丁二酸丁二醇酯(PBS)、聚丁二酸己二醇酯(PHS)、聚己二酸己二醇酯(PHA)和聚癸二酸己二醇酯(PHSe)的非等温结晶动力学,得到了脂肪族聚酯的Avrami指数、结晶速率常数、结晶活化能和过冷度等结晶动力学参数.结果表明,脂肪族聚...  相似文献   

14.
以丁二酸-丁二醇-尿素(PBSu)聚酯酰脲共聚物与己二酸-丁二醇-尿素(PBAu)聚酯酰脲共聚物为预聚物,甲苯-2,4-二异氰酸酯(TDI)为扩链剂,通过熔融共聚成功地制备了可降解聚酯酰脲嵌段共聚物(PBSu-co-PBAu)。采用核磁共振氢谱(1HNMR)、热重分析仪(TG)、差示扫描量热仪(DSC)、X射线衍射仪(XRD)、万能拉力试验机以及水降解测试表征了共聚物的结构与性能。研究发现,随着PBAu含量的增加,嵌段共聚物塑性提高。合成得到的嵌段共聚物具有优异的热稳定性能和良好的生物降解性能,且具有比均聚物PBSu和PBAu以及未改性的聚酯PBS和PBA更好的拉伸性能。此外,还可以通过改变PBSu和PBAu的进料比,对材料的热性能、降解性能和力学性能进行一定范围的调节。  相似文献   

15.
生物降解聚丁二酸丁二醇/二甘醇酯的合成与性能研究   总被引:1,自引:1,他引:1  
肖峰  王庭慰  丁培  包艳华  王景春 《包装工程》2011,32(9):54-57,61
以丁二酸(SA)、1,4-丁二醇(BD)和二甘醇(DEG)为原料,通过直接聚合法合成了可生物降解的聚丁二酸丁二醇/二甘醇酯(PBDGS)。采用1H-NMR,GPC,DSC等对产物进行了表征,研究了物料配比对共聚酯热性能、力学性能、降解性能和亲水性的影响。结果表明,DEG的引入能够有效抑制聚酯链段的结晶能力,同时改善材料的亲水性,使其降解性能较纯PBS有显著提高。  相似文献   

16.
用热失重(TG)和F lynn方法(等转化率方法)研究了聚丁二酸乙二醇酯(PESu),聚丁二酸丁二醇酯(PBSu),聚丁二酸已二醇酯(PHSu),聚癸二酸己二醇酯(PHSe)的热稳定性。结果表明,这些聚酯的热分解温度和分解活化能均随酯基浓度的降低而升高。该研究可对脂肪族聚酯的分子设计、合成和加工工艺提供参考。  相似文献   

17.
以丁二酸、1,4-丁二醇为原料,钛酸四丁酯为催化剂,采用熔融缩聚法合成了聚丁二酸丁二醇酯(PBS),然后将其与β-环糊精(β-CD)在二甲基亚砜(DMSO)中进行超分子自组装,制备了PBS与β-CD的包合物(PBSIC)。通过红外光谱(FT-IR)、核磁共振氢谱(1H-NMR)、广角X射线衍射分析(WAXD)、差示扫描量热分析(DSC)对产物的结构和性能进行了表征和测试。研究结果表明,PBS可以通过非共价键与β-CD内部羟基发生相互作用,稳定地存在于β-CD分子空腔中,形成管道状晶体结构,在β-CD的包裹下,PBS的结晶和熔融行为几乎消失。  相似文献   

18.
分别以5种不同碳链长度的脂肪族二元酸(C4、C6、C8、C10、C12)和丁二醇为单体,采用先酯化后缩聚的两步法合成一系列脂肪族聚酯:聚丁二酸丁二醇酯(PBS)、聚己二酸丁二醇酯(PBA)、聚辛二酸丁二醇酯(PBSu)、聚癸二酸丁二醇酯(PBSe)和聚十二烷二酸丁二醇酯(PBD)。研究了脂肪族二元酸单体的碳链长度对5种聚酯的结构、热性能和力学性能的影响。研究表明,5种聚酯的Mw在125000~250200之间,其结果与特性黏度具有一致性。随着脂肪族二元酸碳链长度的增加,聚酯的T_c,T_m和T_g均先降低后升高;PBSu(C8)的结晶度最高(71.2%),PBA(C6)的结晶度最低(33.8%)。随着碳链长度的增加,聚酯的初始分解温度逐渐向高温区移动,聚酯的拉伸强度逐渐降低;断裂伸长率先增加后降低,PBS(C4)的拉伸强度最大(58.55 MPa),PBSu(C8)的断裂伸长率最大(897.2%)。5种脂肪族聚酯均属于典型的假塑性流体。  相似文献   

19.
以羟基或氨基封端的丁二酸-丁二醇-尿素(Poly(butylene-succinate-urea),PBSu)聚酯酰脲共聚物与己二酸-丁二醇-尿素(Poly(butyleneadipate-urea),PBAu)聚酯酰脲共聚物为预聚物,借助甲苯-2,4-二异氰酸酯(Toluene-2,4-diisocyanate,TDI)对两种预聚物进行扩链反应,得到一种新的含PBSu和PBAu链段的可降解嵌段聚酯酰脲共聚物(PBSu-b-PBAu)。改变扩链时间、扩链温度、扩链剂含量进行了该嵌段共聚物的合成实验,并采用单因素选择法得到TDI扩链合成嵌段共聚物的最佳工艺条件。通过GPC、旋转流变仪、毛细管流变仪测定了最佳工艺条件下合成的不同进料比的嵌段共聚物的分子量和流变性能,结果表明含PBSu和PBAu链段的可降解嵌段聚酯酰脲共聚物具有比PBSu和PBAu更高的黏度和更好的弹性效应。  相似文献   

20.
研究了聚丁二酸丁二醇酯(PBS)及其共聚物聚丁二酸/己二酸-丁二醇酯(PBSA)薄膜在可控堆肥条件下的宏观生物降解行为,结果显示,PBS和PBSA薄膜具有良好的生物降解性能,降解过程经历三个阶段:诱导期、加速期和平坦期。对堆肥中的微生物进行分离和筛选,发现杂色曲霉菌对PBS和PBSA的生物降解能力最强。进一步研究PBS和PBSA薄膜在杂色曲霉菌作用下的微观生物降解行为,结果表明,PBSA薄膜比PBS薄膜具有更快的生物降解速率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号