首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 110 毫秒
1.
李瑞  张群  苏令华  梁佳  罗迎 《电子与信息学报》2019,41(12):2865-2872
双基雷达具有隐蔽性高、抗干扰性能强等优点,在现代电子战中发挥重要作用。基于雷达关联成像原理,该文研究运动目标双基雷达关联成像问题。首先,针对采用均匀线性阵列作为收发天线的双基雷达系统,在发射随机频率调制信号条件下,分析运动目标雷达回波信号特点,建立双基雷达关联成像参数化稀疏表征模型;其次,针对建立的参数化稀疏表征模型,提出一种基于稀疏贝叶斯学习的迭代关联成像算法。该算法在建立贝叶斯模型基础上,通过贝叶斯推理,得到稀疏重构信号,从而实现对运动目标成像和运动参数的精确估计。最后,通过仿真实验验证所提方法的有效性。  相似文献   

2.
无源雷达稀疏成像要求精确已知系统观测矩阵,然而在实际应用中通常存在发射机和接收机站址误差,会使得雷达回波模型中的观测矩阵部分未知,导致回波测量值与观测矩阵失配,将大大减弱传统稀疏成像算法的性能。首先对存在收发阵元位置误差下的无源成像进行了建模分析,接着提出一种基于优化迭代技术的自适应相位误差校正成像方法,可以在重构目标图像的同时消除相位误差对无源成像的影响。仿真结果验证了所提成像方法的有效性。  相似文献   

3.
公富康  张顺生 《信号处理》2018,34(11):1339-1344
由于其较低的成像成本和较强的鲁棒性,使得利用多发射机和多接收机对目标进行有效观测的分布式无源雷达成为雷达技术研究的热门领域。本文在分布式雷达稀疏成像模型基础上,提出一种分布式无源雷达成像接收机配置优化方法,以成像分辨率最高为优化目标函数,针对不同发射机布局采用遗传算法计算出最优接收机布局。同时针对正交匹配追踪(Orthogonal Matching Pursuit, OMP)算法在低信噪比下成像精度较低,信号估计不准确的情况,推导出用协方差稀疏表示接收信号,利用稀疏贝叶斯学习(Sparse Bayesian Learning, SBL)进行信号重构的成像算法,并通过仿真实验对成像性能的改善进行了验证。   相似文献   

4.
传统压缩感知(CS,Compressive Sensing)成像方法一般假定目标精确位于事先划定的成像网格上,实际中由于散射点空间位置是连续分布的,因此偏离网格(Off-grid)问题必然存在.这会引起真实回波测量值与默认系统观测矩阵之间失配,导致传统CS成像方法性能恶化.本文基于频率分集多输入多输出(FD-MIMO,Frequency Diverse Multiple-Input Multiple-Output)雷达,针对Off-grid目标提出了一种基于贝叶斯压缩感知的稀疏自聚焦(SAF-BCS,Sparse Autofocus Imaging Method Based on Bayesian Compressive Sensing)成像算法.该算法依据最大后验(MAP,Maximum A Posteriori)准则,利用变分贝叶斯学习技术求解含有Off-grid目标的稀疏像.与传统稀疏重构方法相比,所提方法充分利用了目标先验信息,可自适应调整参数,能够更好地反演稀疏目标,同时具有校正Off-grid目标的网格位置偏差以及估计噪声功率等优势.仿真结果表明SAF-BCS算法对网格划分不敏感,具有稳健的成像性能.  相似文献   

5.
为了在ISAR成像中更好地压制噪声,消除条纹干扰,提高成像分辨率,本文提出一种基于双向插值处理和频域信息融合的稀疏贝叶斯学习算法,称之为BI?FF SBL算法。该方法首先对回波信号分别进行径向和横向插值预处理,将预处理得到的两份数据通过LA?VB算法进行ISAR成像;然后将得到的两幅ISAR图像通过二维傅里叶变换进入频域,并将两个二维频谱进行信息融合处理,以消除噪声和条纹干扰的相关信息并保留目标结构信息;最后对融合处理后的频谱进行二维傅里叶逆变换,得到最终的ISAR图像。为了验证BI?FF SBL算法的ISAR成像效果,本文进行了基于仿真数据和实测数据的成像实验,并将实验结果与R?D算法、L1?BP算法、LA?VB算法进行对比,发现BI?FF SBL算法在压制噪声和去除条纹干扰方面具有明显的优势,且能提供分辨率更高的ISAR图像。当实验数据信噪比降到0 dB时,BI?FF SBL算法依然能够提供清晰的ISAR图像,明显优于其他三种算法。测试超分辨重构误差的实验结果表明,相比于L1?BP算法和LA?VB算法,BI?FF SBL算法的重构误差更低,在实验数据信噪比为0 dB时,重构信噪比可以达到13.55 dB。  相似文献   

6.
针对多频带雷达信号融合,建立了多频带雷达信号表示模型,将多频带信号融合问题等价于一个信号表示问题。研究了基追踪算法在多频带信号融合中的局限性,研究表明:由于多个频带的稀疏分布,破坏了字典的相干性,使得基追踪算法可能无法收敛到真实的稀疏解。提出了基于稀疏贝叶斯学习的多频带信号融合方法,并证明了字典满足唯一表示性条件从而可以保证算法收敛到真实的稀疏解。实验表明:基于稀疏贝叶斯学习的多频带信号融合方法能够更加真实地反映目标散射特性。  相似文献   

7.
8.
该文针对现有穿墙雷达建筑物布局成像中扩展目标稀疏成像方法未能有效利用墙体反射信号的结构稀疏性,导致成像中出现墙体不连贯和墙体轮廓不明显的问题,提出一种利用稀疏信号块间耦合的建筑物布局成像方法。该方法在块稀疏信号特性的高斯分层先验模型的基础上,利用块间耦合系数进一步表征场景中墙体反射信号的结构稀疏性,然后将其引入到控制稀疏信号先验概率分布的超参数中,从而把稀疏信号的结构性转化为超参数的耦合关系,最后利用期望最大化(EM)算法求解超参数的最大后验(MAP)估计。仿真和实验数据处理结果表明,该方法有效改善了墙体的成像质量。  相似文献   

9.
阵列合成孔径雷达(Linear Array Synthetic Aperture Radar, LASAR) 3维成像技术是一种具有重要潜在应用价值的雷达成像新体制,但受线阵天线及平台尺寸限制,传统匹配滤波成像算法难以实现LASAR高分辨3维成像。该文利用LASAR回波信号及观测目标的先验分布特性,提出了一种基于快速稀疏贝叶斯正则化重构的LASAR高分辨3维成像算法。该算法先结合贝叶斯估计准则及最大似然估计原理,构造LASAR目标重构的稀疏贝叶斯最小化代价函数;再利用迭代正则化方法求解联合范数最优化问题实现LASAR稀疏目标高分辨3维成像。另外,针对稀疏贝叶斯正则化成像运算量大的问题,结合位置预测快速成像思路,利用阈值分割算法对稀疏粗成像进行强目标提取,进而提升算法运算效率。仿真数据和实测数据验证了该文算法的有效性。   相似文献   

10.
该文提出一种新的单频连续波无源雷达成像时域算法。该算法先建立信号匹配矩阵,再将接收到的回波信号拓展为回波信号矩阵,然后将信号匹配矩阵和回波信号矩阵的Hadamard积在时间维上求和,实现回波信号的匹配积累,得到散射点目标的像。给出了算法成像分辨率,分析了影响成像质量的因素并综合得到算法聚焦能力的量度。算法完全在时域中进行成像处理,避免了频域的插值处理。在理论分析的基础上,仿真实验得到了较好成像结果,验证了所提算法有效性。  相似文献   

11.
机载双基雷达杂波与构型有关且具有严重的距离依赖性,因此杂波脊复杂多变,独立同分布(IID)的样本很少。传统的空时自适应处理(STAP)方法受独立同分布样本数的限制,对机载双基雷达杂波的抑制性能有限。基于机载雷达杂波在角度-多普勒域分布的稀疏特性和稀疏贝叶斯学习(SBL)在稀疏信号重建方面的优势,该文将SBL算法应用于较为复杂的机载双基雷达双动模式下杂波抑制,该方法可以用少量训练单元杂波估计待测距离单元的杂波协方差矩阵(CCM),然后进行空时自适应处理;同时,该算法不需要样本独立同分布,在双基双动模式下对杂波的抑制性能较好,仿真结果验证了算法的有效性。  相似文献   

12.
针对采用l1范数优化的稀疏表示DOA估计算法正则化参数选取困难、计算复杂度高的问题,该文提出一种基于稀疏贝叶斯学习的高效算法。该算法首先利用均匀线阵的结构特性,将DOA估计联合稀疏模型的构建与求解转换到实数域进行。其次,通过优化稀疏贝叶斯学习的基消除机制,使该算法具有更快的收敛速度。仿真结果表明,与l1范数优化类算法相比,该文方法具有更高的空间分辨率和估计精度且计算复杂度低。  相似文献   

13.
基于贝叶斯框架下的稀疏重构方法,由于考虑了稀疏信号的先验信息以及测量过程中的加性噪声,因而能够更好地重建目标系数,然而传统的稀疏贝叶斯学习(SBL)算法参数多,时效性差。该文考虑一种新的稀疏贝叶斯学习方法方差成分扩张压缩(ExCoV),其不同于SBL中赋予所有的信号元素各自的方差分量参数,ExCoV方法仅仅赋予有重要意义的信号元素不同的方差分量,并拥有比SBL方法更少的参数。基于计算机层析成像技术框架下的ISAR成像模型,该文将ExCoV方法结合压缩感知(CS)理论将其进行ISAR成像,并从适用性和成像效果等方面与常用的极坐标格式算法(PFA),卷积逆投影算法(CBPA)和传统的稀疏重构算法进行比较,点目标仿真结果表明基于ExCoV的方法得到的ISAR像具有低旁瓣,高分辨率的特点,真实数据的成像结果表明该方法是一种比SBL更有效的ISAR成像算法。  相似文献   

14.
离格(off-grid)波达方向(DOA)估计解决的是实际DOA和假设网格点的失配问题。对于空间紧邻信号的DOA,稀疏的网格点会导致精度和分辨率的下降,密集的网格点虽然可以提高估计精度却显著增加计算负担。针对此问题,该文提出基于稀疏贝叶斯学习(SBL)的空间紧邻信号DOA估计算法,主要包括3个步骤。首先,通过最大化阵列输出的边缘似然函数,推导了信号在拉普拉斯先验下的新不动点迭代方法,进行超参数的预估计,相比其他经典SBL算法提高了收敛速度;其次,利用新网格插值方法优化网格点集,并二次估计噪声方差和信号功率以分辨空间紧邻信号的DOA;最后,推导了似然函数关于角度的最大化公式以改进离格DOA搜索。仿真表明该算法比其他经典SBL类算法对空间紧邻信号的DOA具有更高的精度和分辨率,同时有计算效率的提升。  相似文献   

15.

针对多跳频信号空域参数估计问题,该文在稀疏贝叶斯学习(SBL)的基础上,利用跳频信号的空域稀疏性实现了波达方向(DOA)的估计。首先构造空域离散网格,将实际DOA与网格点之间的偏移量建模进离散网格中,建立多跳频信号均匀线阵接收数据模型;然后通过SBL理论得到行稀疏信号矩阵的后验概率分布,用超参数控制偏移量和信号矩阵的行稀疏程度;最后利用期望最大化(EM)算法对超参数进行迭代,得到信号矩阵的最大后验估计以完成DOA的估计。理论分析与仿真实验表明该方法具有良好的估计性能并能适应较少快拍数的情况。

  相似文献   

16.
以往的跳频信号参数盲估计方法大多难以适应多个信号同时存在的情况,且需要积累一定数量的样本以后才能从中提取所需要的信息.为了稳定实时地跟踪跳频信号的频率,该文提出一种利用贝叶斯稀疏学习的单/多通道跳频信号频率估计和跳变时刻检测方法来实现多跳频信号频率的实时跟踪.首先建立了多跳频信号的稀疏表示模型,然后介绍了多观测贝叶斯稀疏学习算法及跳变时刻实时检测方法,最后仿真结果验证方法的有效性.  相似文献   

17.
传统捷变频成像方法具有高旁瓣、低分辨率的缺点。鉴于捷变频ISAR回波信号的稀疏性,该文基于原始数据的2维压缩感知方案,在贝叶斯原理框架下,用稀疏贝叶斯算法方差成分扩张压缩方法(ExCoV)实现捷变频ISAR像的重建。贝叶斯框架下的稀疏重构算法考虑了稀疏信号的先验信息以及测量过程中的加性噪声,因而能够更好地重建目标系数。作为一种新的稀疏贝叶斯算法,ExCoV不同于稀疏贝叶斯学习(SBL)算法中赋予所有的信号元素各自的方差分量参数,ExCoV方法仅仅赋予有重要意义的信号元素不同的方差分量,并拥有比SBL方法更少的参数,克服了SBL算法参数多时效性差的缺点。仿真结果表明,该方法能克服传统捷变频成像缺点,并能够实现低信噪比条件下的2维高精度成像。  相似文献   

18.
针对稀疏孔径条件下双基地ISAR成像分辨率低、运算时间长等问题,提出了一种基于快速稀疏贝叶斯学习的高分辨成像算法。首先,建立基于压缩感知的双基地ISAR稀疏孔径回波模型,然后将整个二维回波数据进行分块处理,并假设目标图像各像元服从高斯先验,建立稀疏贝叶斯模型,再利用快速边缘似然函数最大化方法求解得到高质量目标图像,最后将所求的每块回波对应的目标图像合成整个二维图像。由于采取了分块处理,在每块图像重构时减少了数据存储量和计算量。另外,相比于传统的稀疏贝叶斯学习求解方法,本文所提快速算法在保证重构质量的同时进一步缩短了运算时间,仿真实验验证了算法的有效性和优越性。  相似文献   

19.
该文基于贝叶斯分析的视角,揭示了一类算法,包括使用隐变量模型的稀疏贝叶斯学习(SBL),正则化FOCUSS算法以及Log-Sum算法之间的内在关联。分析显示,作为隐变量贝叶斯模型的一种,稀疏贝叶斯学习使用第2类最大似然(Type II ML)在隐变量空间进行运算,可以视作一种更为广义和灵活的方法,并且为不适定反问题的稀疏求解提供了改进的途径。较之于目前基于第1类最大似然(Type I ML)的稀疏方法,仿真实验证实了稀疏贝叶斯学习的优越性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号