首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The methane reforming process combined with metal–oxide reduction was examined on iron-based oxides of Ni(II)–, Zn(II)–, and Co(II)–ferrites, for the purpose of converting solar high-temperature heat to chemical fuels of CO-rich syngas and reduced metal oxide as storage and transport of solar energy. It was found that the Ni(II)-doping effectively improves the reactivity of magnetite as an oxidant for methane reforming. A two-step cyclic steam reforming of methane, which produces CO-rich syngas and hydrogen uncontaminated with carbon oxides alternately in the separate steps, was successfully demonstrated by using a ZrO2-supported Ni(II)–ferrite (Ni0.39Fe2.61O4/ZrO2) as a working material in the temperature range of 1073–1173 K. The produced CO-rich syngas had the H2/CO ratio that was more suitable for methanol production than that produced by a conventional single-step steam reforming. This syngas production using the Ni0.39Fe2.61O4/ZrO2 as an oxidant was also demonstrated under direct irradiation by a solar-simulated, high-flux visible light in laboratory-scale fixed bed system. The directly-irradiated Ni0.39Fe2.61O4/ZrO2 particles acted simultaneously as good radiant absorbers and reactive chemical reactants to yield more than 90% of methane conversion to a 2:1 molar mixture of CO and H2 under flux irradiation of 500 kW m−2 in the residence time less than 1 s.  相似文献   

2.
CO2 reforming with simultaneous steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal oxide catalyst (prereduced by H2) at different process conditions has been investigated. In the simultaneous CO2 and steam reforming, the conversion of methane and H2O and also the H2/CO product ratio are strongly influenced by the CO2/H2O feed-ratio. In the simultaneous CO2 reforming and partial oxidation of methane, the conversion of methane and CO2, H2 selectivity and the net heat of reaction are strongly influenced by the process parameters (viz. temperature, space velocity and relative concentration of O2 in the feed). In both cases, no carbon deposition on the catalyst was observed. The reduced NdCoO3 perovskite-type mixed-oxide catalyst (Co dispersed on Nd2O3) is a highly promising catalyst for carbon-free CO2 reforming combined with steam reforming or partial oxidation of methane to syngas.  相似文献   

3.
ZrO2-supported tungsten oxides were used for cyclic production of syngas and hydrogen by methane reforming (reduction) and water splitting (re-oxidation). The reduction characteristics of WO3 to WO2 and WO2 to W were examined at various temperatures (1073–1273 K) and reaction times. Significant portions of the tungsten oxides were also reduced by the produced H2 and CO. The extent of reduction by H2 varied greatly depending on temperature and WO3 content and also on the reduction of either WO3 or WO2, while that by CO was consistently low. When the overall degree of reduction became sufficiently high, methane decomposition started to proceed rapidly, resulting in considerable carbon deposition and H2 production. Consequently, the H2/(CO + CO2) ratio varied from around 1 to higher than 2. During the repeated cyclic operations with a proper reduction time at a given temperature, the syngas and hydrogen yields decreased gradually while the H2/(CO + CO2) ratio remained nearly constant and the carbon deposition was negligible.  相似文献   

4.
Analysis of the effect of adding small amounts of steam to the methane dry reforming feed on activity and products distribution was performed from thermodynamic equilibrium calculations of the system based on the Gibbs free energy minimization method. This analysis is supported by new insights from the direct experimental investigation of the influence of co-feeding with H2O over a Ru/ZrO2-La2O3 catalyst. Activity measurements were carried out in a fixed-bed reactor but using the operating conditions applicable in a Pd membrane reactor, that is, at maximum reaction temperature below 550 °C. Experimental results were in good agreement with thermodynamics predictions. It was observed that the addition of H2O into the dry reforming feed strongly affects activity and products distribution. The co-feeding of steam resulted in increasing methane conversion and hydrogen yield but decreasing carbon dioxide conversion and carbon monoxide yield. At a given temperature, syngas composition (H2/CO ratio) can be tuned by changing the amount of H2O co-fed. Interestingly the stability of the Ru/ZrO2-La2O3 catalyst was improved by adding steam to the dry reforming reactant mixtures.  相似文献   

5.
Complete removal of CO by methanation in H2-rich gas stream was performed over different metal catalysts. Ni/ZrO2 and Ru/TiO2 were the most effective catalysts for complete removal of CO through the methanation. These catalysts can decrease a concentration of CO from 0.5% to 20ppm in the gases formed by the steam reforming of methane with a significantly low conversion of CO2 into methane. Catalytic activities of supported Ni and Ru strongly depended on the type of supports, i.e. ZrO2 for Ni and TiO2 for Ru are suitable supports for the methanation of CO. The effect of catalytic supports on methanation of CO could be explained by particles sizes of Ni and Ru metal. Catalytic activity of supported Ru catalysts for the complete removal of CO through methanation became higher as particle sizes of Ru metal became smaller, while Ni metal particles with relatively larger diameters were effective for the reaction.  相似文献   

6.
The generation of essentially pure hydrogen through a redox cycle using methane and then water has been investigated for a series of tungsten oxides stabilised by ceria–zirconia. The calcined starting materials were largely monoclinic WO3 with CeO2 and ZrO2 undetectable by XRD. Samples containing 80% and especially 69% WO3 showed additional XRD lines due to a phase of unknown composition. Temperature programmed reduction to 750 °C in methane converted samples containing WO3 alone to WC together with small amounts of tungsten metal and a WC1−x phase. Reoxidation in water at the same temperature then produced CO and H2 in corresponding amounts. Under the same conditions the 69% WO3 sample was reduced only as far as WO2 and reoxidation yielded H2 largely free of CO. The reoxidation product was not WO3 but consisted of various non-stoichiometric oxides with composition WO2+x (x = 0.72, 0.83, etc). The reduction–reoxidation cycle could be repeated many times without loss of hydrogen production efficiency.  相似文献   

7.
Steam enhanced carbon dioxide reforming of methane in DBD plasma reactor   总被引:1,自引:0,他引:1  
Considering the inevitable high energy input to implement the CO2 reforming of methane under high-temperature operation using conventional catalysis method, the low temperature conversion of CO2 and methane in the coaxial dielectric barrier discharge (DBD) plasma reactor was investigated in this work. Steam was introduced to enhance the CO2 reforming of methane with synergetic catalysis effect by cold plasma and catalyst. The experimental results showed that a certain percent of steam could promote the conversion of both CH4 and CO2. Meanwhile, the carbon deposition was evidently reduced compared with the dry reforming of methane. With the increase of steam input, the steam reforming occurred predominantly. As a result, the hydrogen volume percentage in the product gases increased. In this way, the products with different H2/CO ratio could be achieved by changing the mole ratio of CH4/CO2/H2O at the reactor inlet. In particular, when the mole ratio of H2O/CH4 increased to almost 3 corresponding to the pure steam reforming process, the conversion of CH4 reached almost 0.95 and the selectivity to H2 was almost 0.99 at 773K.  相似文献   

8.
In this work, tri‐reforming and steam reforming processes have been coupled thermally together in a reactor for production of two types of synthesis gases. A multitubular reactor with 184 two‐concentric‐tubes has been proposed for coupling reactions of tri‐reforming and steam reforming of methane. Tri‐reforming reactions occur in outer tube side of the two‐concentric‐tube reactor and generate the needed energy for inner tube side, where steam reforming process is taking place. The cocurrent mode is investigated, and the simulation results of steam reforming side of the reactor are compared with corresponding predictions for thermally coupled steam reformer and also conventional fixed‐bed steam reformer reactor operated at the same feed conditions. This reactor produces two types of syngas with different H2/CO ratios. Results revealed that H2/CO ratio at the output of steam and tri‐reforming sides reached to 1.1 and 9.2, respectively. In this configuration, steam reforming reaction is proceeded by excess generated heat from tri‐reforming reaction instead of huge fired‐furnace in conventional steam reformer. Elimination of a low performance fired‐furnace and replacing it with a high performance reactor causes a reduction in full consumption with production of a new type of synthesis gas. The reactor performance is analyzed on the basis of methane conversion and hydrogen yield in both sides and is investigated numerically for various inlet temperature and molar flow rate of tri‐reforming side. A mathematical heterogeneous model is used to simulate both sides of the reactor. The optimum operating parameters for tri‐reforming side in thermally coupled tri‐reformer and steam reformer reactor are methane feed rate and temperature equal to 9264.4 kmol h?1 and 1100 K, respectively. By increasing the feed flow rate of tri‐reforming side from 28,120 to 140,600 kmol h?1, methane conversion and H2 yield at the output of steam reforming side enhanced about 63.4% and 55.2%, respectively. Also by increasing the inlet temperature of tri‐reforming side from 900 to 1300 K, CH4 conversion and H2 yield at the output of steam reforming side enhanced about 82.5% and 71.5%, respectively. The results showed that methane conversion at the output of steam and tri‐reforming sides reached to 26.5% and 94%, respectively with the feed temperature of 1100 K of tri‐reforming side. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
To elucidate the coupling effects of temperature and ratio of steam to carbon on the methane steam reforming process, the characterizations of methane steam reforming at different temperature and ratio of steam to carbon in term of distribution of H2 and CO, and the elementary reaction rate were investigated. Meanwhile, the formation mechanisms of H2 and CO via sensitivity analysis and reaction path analysis were obtained. The results showed that the coupling effects of temperature and ratio of steam to carbon on the methane steam reforming were higher than that of individual factor. The effects of temperature on the methane steam reforming were higher than that of the ratio of steam to carbon. The adsorption and desorption reaction of CH4 on the surface of Ni-based catalyst had the most obvious effect on the sensitivity of H2, CH4 and CO. Besides, the effects of adsorption and desorption reaction of H2O on the sensitivity of H2 were higher than that of CH4 and CO. Hydrogen was generated by the desorption reaction of H(s) in the adsorbed state and from three generating paths: a) CH4(s) dissociated directly or reacted with O(s) to form H(s); b) The dissociation reaction of H2O(s) produced H(s); c) OH(s) dissociated directly or reacted with C(s) to form H(s). Carbon monoxide was generated from single path: CH4(s)→CH3(s)→CH2(s)→CH(s)→C(s)→CO(s)→CO(g).  相似文献   

10.
Ni catalysts supported on (CaO–ZrO2)-modified γ-Al2O3 were prepared by sequential impregnation. The effects of varied CaO to ZrO2 mole ratios at 0, 0.20, 0.35, 0.45, and 0.55 on the activity and stability of the modified Ni catalysts were studied. As a result of using CaO–ZrO2 as a promoter, each catalyst contained CaO–ZrO2 at only 5%. γ-Al2O3 used as support was modified by CaO–ZrO2 before the deposition of nickel oxide. The addition of CaO–ZrO2 at an optimum ratio was expected to improve the stability of Ni catalysts due to the decrease of carbon formation resulting from carbon gasification. All the fresh catalysts were characterized by ICP, XRD, BET surface area, TGA in H2, and TPR before catalytic testing in steam methane reforming at 600 °C. The spent catalysts were examined by TEM and TGA to observe the catalysts deactivation. The identification of CaO–ZrO2 phases indicated that CaO and ZrO2 reacted with each other to be monoclinic solid solution ZrO2, CaZr4O9, CaZrO3, and CaO corresponding to the phase diagram of CaO–ZrO2. The existence of CaZrO3 for 0.55 mol ratio of CaO/ZrO2 enhanced activity in steam methane reforming because oxygen vacancies in CaZrO3 greatly preferred the water adsorption creating the favorable conditions for carbon gasification and, then, water gas shift. The prominence and continued existence of these two reactions on the Ni catalysts leads to the particular increase of H2 yield. Moreover, the increasing amount of CaZrO3 in the Ni catalysts significantly improved carbon gasification. However, the Ni catalysts with CaZrO3 showed whisker carbon after catalytic testing; this carbon specie has not been tolerated in steam methane reforming. Therefore, these results significantly differed from the hypothesis.  相似文献   

11.
Solar redox reforming is a process that uses solar radiation to drive the production of syngas from natural gas. This approach caught attention in recent years, because of substantially lower reduction temperatures compared to other redox cycles. However, a detailed and profound comparison to conventional solar reforming has yet to be performed. We investigate a two-step redox cycle with iron oxide and ceria as candidates for redox materials. Process simulations were performed to study both steam and dry methane reforming. Conventional solar reforming of methane without a redox cycle, i.e. on an established catalyst was used as reference. We found the highest efficiency of a redox cycle to be that of steam methane reforming with iron oxide. Here the solar-to-fuel efficiency is 43.5% at an oxidation temperature of 873 K, a reduction temperature of 1190 K, a pressure of 3 MPa and a solar heat flux of 1000 kW/m2. In terms of efficiency, this process appears to be competitive with the reference process. In addition, production of high purity H2 or CO is a benefit, which redox reforming has over the conventional approach.  相似文献   

12.
13.
Optimization of steam methane reforming (SMR) reaction by CO2 sorption enhancement was investigated. In this study, the sorption-enhanced steam methane reforming reaction (SESMR) was conducted to maximize hydrogen production via suitable adjustments in the operating conditions of the reaction, which include the molar ratio of steam to CH4, space velocity, and temperature. The reforming catalysts were prepared by a physical mixture of 20 wt% Ni/Al2O3 and CaO. The results reveal that there are significant differences in CH4 conversion between the SMR and the SESMR from 18% to 108%; this conversion strongly depended on the reaction conditions. High-purity H2 products (98.9%) with <0.1 ppmv CO were obtained by SESMR under the suitable conditions of 2600 cm3/g/h, steam/CH4 molar ratio of 4 and 823 K. This implies that the high-quality H2 produced through the SESMR process could be directly used for the proton-exchange membrane fuel cell.  相似文献   

14.
The basicity of ZrO2 support was successfully controlled by doping La and alkaline earth metals. La doping significantly increased weak basic sites, and medium and strong basic sites appeared by the further increase of La doping. Mg and Ca doping on La doped ZrO2 increased weak and medium basic sites, respectively. Significant increase of total number of basic sites including strong basic sites was observed by Sr doping. In ammonia decomposition, turn over frequency (TOF) of ammonia over Ru supported ZrO2 and metal doped ZrO2 exhibited a good relation to the number of medium and strong basic sites. From TOF with different reaction temperature, it was supposed that the higher basicity is effective to recombinative desorption of nitrogen at lower reaction temperatures, whereas the number of medium basic sites would be effective at a high reaction temperature. Catalytic activity in dry reforming of methane was evaluated over Ru supported ZrO2 and metal doped ZrO2 as well. The catalytic activity was improved by metal doping to the supports. Both TOF of CO2 and methane showed a good relation to the total number of basic sites as well as the number of medium and strong basic sites. It was interestingly found that H2/CO was increased with an increase in the total number of basic sites. This implies the weak basic sites would have a positive impact on H2/CO.  相似文献   

15.
Stepwise production of syngas and hydrogen from ZrO2-supported CeO2 through methane reforming and water splitting was investigated in order to find proper operating conditions under which carbon deposition could be minimized. Recommendable operating temperature and time were 1073 K and 30 min for both the methane reforming and the water splitting. Even though the H2/CO ratio during the methane reforming was maintained close to the desired ratio of 2, undesirable methane cracking occurred to a small extent and further reduction of Ce2O3 to metallic Ce by CH4 and H2 occurred to some extent. When the methane reforming-water splitting cyclic operations were repeated, the yields of syngas and hydrogen decreased considerably from the first cycle to the second cycle, but from the second cycle to the fifth cycle the gas yields were maintained nearly constant. As the CeO2 content in the sample increased, the gas yields per mole of CeO2 decreased but the gas productions per gram of sample increased.  相似文献   

16.
Biogas is a renewable biofuel that contains a lot of CH4 and CO2. Biogas can be used to produce heat and electric power while reducing CH4, one of greenhouse gas emissions. As a result, it has been getting increasing academic attention. There are some application ways of biogas; biogas can produce hydrogen to feed a fuel cell by reforming process. Urea is also a hydrogen carrier and could produce hydrogen by steam reforming. This study then employes steam reforming of biogas and compares hydrogen-rich syngas production and carbon dioxide with various methane concentrations using steam and aqueous urea solution (AUS) by Thermodynamic analysis. The results show that the utilization of AUS as a replacement for steam enriches the production of H2 and CO and has a slight CO2 rise compared with pure biogas steam reforming at a temperature higher than 800 °C. However, CO2 formation is less than the initial CO2 in biogas. At the reaction temperature of 700 °C, carbon formation does not occur in the reforming process for steam/biogas ratios higher than 2. These conditions led to the highest H2, CO production, and reforming efficiency (about 125%). The results can be used as operation data for systems that combine biogas reforming and applied to solid oxide fuel cell (SOFC), which usually operates between 700 °C to 900 °C to generate electric power in the future.  相似文献   

17.
In this study, methane and methanol steam reforming reactions over commercial Ni/Al2O3, commercial Cu/ZnO/Al2O3 and prepared Ni–Cu/Al2O3 catalysts were investigated. Methane and methanol steam reforming reactions catalysts were characterized using various techniques. The results of characterization showed that Cu particles increase the active particle size of Ni (19.3 nm) in Ni–Cu/Al2O3 catalyst with respect to the commercial Ni/Al2O3 (17.9). On the other hand, Ni improves Cu dispersion in the same catalyst (1.74%) in comparison with commercial Cu/ZnO/Al2O3 (0.21%). A comprehensive comparison between these two fuels is established in terms of reaction conditions, fuel conversion, H2 selectivity, CO2 and CO selectivity. The prepared catalyst showed low selectivity for CO in both fuels and it was more selective to H2, with H2 selectivities of 99% in methane and 89% in methanol reforming reactions. A significant objective is to develop catalysts which can operate at lower temperatures and resist deactivation. Methanol steam reforming is carried out at a much lower temperature than methane steam reforming in prepared and commercial catalyst (275–325 °C). However, methane steam reforming can be carried out at a relatively low temperature on Ni–Cu catalyst (600–650 °C) and at higher temperature in commercial methane reforming catalyst (700–800 °C). Commercial Ni/Al2O3 catalyst resulted in high coke formation (28.3% loss in mass) compared to prepared Ni–Cu/Al2O3 (8.9%) and commercial Cu/ZnO/Al2O3 catalysts (3.5%).  相似文献   

18.
Nickel nanoclusters embedded in multicomponent mesoporous metal oxides (Ni–MMOs) are obtained at various support compositions by a single-step synthesis of Ni ion incorporated mesoporous metal oxides (NiO–MMOs) followed by selective reduction of the NiO to Ni metal clusters. The resultant Ni–MMOs catalysts displayed enhanced Ni dispersion with well-developed mesopore structures at various support composition, exhibiting superior catalytic properties when compared to a siliceous SBA-16-supported Ni catalyst prepared by a conventional impregnation method. Glycerol steam reforming conducted at 873 K on 1Ni–2Al2O2–2ZrO2 and 1Ni–2SiO2–2ZrO2 catalysts exhibited considerably higher glycerol conversions over the 10 wt%-Ni/SBA-16 catalyst with similar Ni loading amount. This was primarily due to the enhanced Ni dispersion resulting from the direct synthesis process. The multicomponent mesoporous supports also significantly affect product selectivity, favoring higher hydrogen concentration in the product stream. The water–gas shift reaction appears to be positively affected by the 2Al2O2–2ZrO2 and 2SiO2–2ZrO2 multicomponent metal oxide matrices, which facilitated the conversion of the CO produced by the glycerol reforming further to additional hydrogen. Direct single-step synthesis of Ni–MMO catalysts was effective in enhancing the dispersion of Ni nanoclusters, as well as variation of the support components of the mesoporous catalyst systems.  相似文献   

19.
In recent times, glycerol has been employed as feedstock for the production of syngas (H2 and CO) with H2 as its main constituent. This study centers on dry reforming of glycerol over Ag-promoted Ni/Al2O3 catalysts. Prior to characterization, the catalysts were synthesized using the wet impregnation method. The reforming process was carried out using a fixed bed reactor at reactor operating conditions; 873–1173 K, carbon dioxide to glycerol ratio of 0.5 and gas hourly space velocity (WHSV) in the range of 14.4 ≤ 72 L gcat−1 h−1). Ag (3)-Ni/Al2O3 gave highest glycerol conversion and hydrogen yield of 40.7% and 32%, respectively. The optimum conditions which gave highest H2 production, minimized methane production and carbon deposition were reaction temperature of 1073 K and carbon dioxide to glycerol ratio of 1:1. This result can attributed to the small metal crystallite size characteristics possessed by Ag (3)–Ni/Al2O3, which enhanced metal dispersion in the catalyst matrix. Characterization of the spent catalyst revealed the formation of two types of carbon species; encapsulating and filamentous carbon which can be oxidized by O2.  相似文献   

20.
Hydrogen-rich syngas production from the catalytic steam reforming of bio-oil from fast pyrolysis of pinewood sawdust was investigated by using La1−xKxMnO3 perovskite-type catalysts. The effects of the K substitution, temperature, water to carbon molar ratio (WCMR) and bio-oil weight hourly space velocity (WbHSV) on H2 yield, carbon conversion and the product distribution were studied in a fixed-bed reactor. The results showed that La1−xKxMnO3 perovskite-type catalysts with a K substitution of 0.2 gave the best performance and had a higher catalytic activity than the commercial Ni/ZrO2. Both high temperature and low WbHSV led to higher H2 yield. However, excessive steam reduced hydrogen yield. For the La0.8K0.2MnO3 catalyst, a hydrogen yield of 72.5% was obtained under the optimum operating condition (T = 800 °C, WCMR = 3 and WbHSV = 12 h−1). The deactivation of the catalysts mainly was caused by coke deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号