共查询到18条相似文献,搜索用时 139 毫秒
1.
2.
针对柔性作业车间调度问题,以最小化最大完工时间、关键机器负载以及机器总负载为目标建立调度数学模型,提出一种改进改进遗传算法进行求解。算法采用两种交叉原则,通过对关键工序块操作形成二级邻域结构进行求解,并采用外部档案集对操作过程中的个体进行保留,采用加权法对个体进行评价,对Kacem基准算例进行求解,以证明所提出算法求解性能。 相似文献
3.
4.
5.
为解决以设备能耗、刀具磨损和切削液消耗为碳排放来源,能耗和人工费用为加工成本的多目标柔性作业车间低碳调度问题,建立以最小化碳排放量、最长完工时间和加工成本为目标的低碳调度模型,提出一种改进带精英策略的非支配遗传算法(NSGA-Ⅱ)并进行求解。首先通过基于Tent混沌映射的编码与融合了层次分析法(AHP)的贪婪解码来动态调整染色体组成,提高初始种群质量;然后提出了一种基于遗传参数的自适应遗传策略,根据种群进化阶段与种群非支配状态动态调整交叉、变异率;最后设计了一种基于外部档案集的改进精英保留策略,提高了算法后期的种群多样性并保留了进化过程中的优质个体。通过标准调度算例与实际案例验证了改进算法的有效性。 相似文献
6.
7.
基于改进非支配排序遗传算法的多目标柔性作业车间调度 总被引:16,自引:0,他引:16
采用多目标进化算法解决具有工件释放时间、工件目标差异的柔性作业车间调度问题。依据实际制造系统中存在较多的最大完工时间、平均流经时间、总拖期时间、机器总负荷、瓶颈机器负荷和生产成本性能指标,建立多目标柔性作业车间调度模型。针对柔性作业车间调度问题的特点,设计一种扩展的基于工序的编码及其主动调度的解码机制,以及初始解产生机制和有效的交叉、变异操作;针对非支配排序遗传算法(Non-dominated sorting genetic algorithm II,NSGA-II)在非支配解排序和精英选择策略方面的不足,设计一种改进的非支配排序遗传算法,应用改进的算法求解柔性作业车间调度问题得到一组Pareto解集,并运用层次分析法选出最优妥协解。通过测试基准和模拟实际生产的实例,验证提出算法的可行性和有效性。 相似文献
8.
多目标柔性作业车间分批优化调度 总被引:5,自引:2,他引:5
为解决多目标柔性作业车间分批调度问题,提出了一种基于粒子群算法的多目标柔性分批调度算法。提出了一种基于游标的柔性批量分割方法,并采用一种批量分割与加工工序相融合的粒子编码方法,使得该算法不但可根据机床负荷将工件分割成具有柔性批量的多个子批,而且可使子批工艺路线选取及加工排序同时得到优化。算法引入了决策者的偏好信息,用于引导算法的搜索方向,使搜索结果集中于决策者感兴趣的Pareto边沿,避免了决策者在众多非劣解中做出困难选择。通过实例仿真,对算法性能进行了比较分析和评价,结果表明了算法的有效性和可行性。最后,从生产实际出发给出了算例,证明了算法的有效性和对生产实践的指导作用。 相似文献
9.
多目标柔性作业车间调度优化研究 总被引:16,自引:2,他引:16
提出了一种集成权重系数变化法和小生境技术的混合遗传算法,建立了包括时间、成本、交货期满意度和设备利用率在内的多目标优化模型。采用基于工序的编码方式和“间隙挤压法”活动化解码方法;遗传算子包括选择、交叉、变异3种类型;选择操作采用轮盘赌选择方式。为了保证解的收敛性和多样性,采用了精英保留策略和小生境技术。交叉操作采用线性次序交叉方式;变异操作采用互换操作变异方法。染色体的适应度是各个目标函数的随机加权和。仿真实验证明,提出的混合遗传算法可以有效解决柔性作业车间多目标调度优化问题。 相似文献
10.
11.
12.
13.
14.
15.
16.
提出了一种结合混合进化算法和知识的新型多目标车间调度方法,在有限的时间或迭代次数下可以得到更好的非支配Pareto解以服务于生产调度。由优化目标和属性归纳演绎法确定了知识挖掘的工件属性,通过优先级权重得到了规则初始种群。所提出的增减排序方法通过重新局部排序初始种群中工序的位置来克服优先级下工序不足或过饱和的问题。最后由一标准案例和非支配排序遗传算法-Ⅱ(NSGA-Ⅱ)混合模拟退火算法对所提调度方法进行了验证,得到的结果无论是优化目标值还是解集的分布在不同迭代次数和初始种群尺寸下都要优于传统随机进化方法。 相似文献
17.