首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
为澄清氨基酸基团对成膜的影响,采用苯丙氨酸(Phenylalanine,Phe)、甲硫氨酸(Methionine,Met)和天冬酰胺(Asparagine,Asn)3种氨基酸调控AZ31镁合金的降解速率,采用恒温水浴法(60℃)在其表面制备了3种氨基酸Ca-P涂层(Ca-P_(Phe)、Ca-P_(Met)和Ca-P_(Asn)),并使用SEM、EDS、XRD、FTIR及XPS对涂层的形貌、成分分布和物相结构进行分析,利用电化学极化和交流阻抗及析氢腐蚀实验对涂层在模拟人体体液(Hank􀆳s)中的耐蚀性能进行研究。探讨了氨基酸添加剂在AZ31镁合金表面诱导Ca-P涂层成膜的作用机制。Ca-P、Ca-P_(Phe)、Ca-P_(Met)和Ca-P_(Asn)涂层的厚度分别为(3.47±0.47)、(6.06±0.77)、(7.63±1.70)和(8.23±1.37)μm。涂层主要组成物相为CaHPO_(4)及Ca_(10)(PO_(4))_(6)(OH)_(2)(HA)。电化学和析氢实验结果表明,氨基酸提高了Ca-P涂层耐蚀性能。这主要归因于氨基酸分子的缓蚀作用,并在AZ31镁合金表面发生化学吸附。氨基酸中的氨基吸附主要是通过N原子的孤对电子与镁合金表面耦合来实现的;羧基是通过羰基中的O原子与Mg^(2+)结合。此外,氨基酸中的杂原子亦能与镁合金的空位分子轨道共享其孤对电子。最后,提出了氨基酸诱导Ca-P涂层的成膜机理。  相似文献   

2.
目的提升镁合金的耐腐蚀性能。方法采用电化学测试、盐雾试验、XRD及SEM等方法,研究了不同硼酸添加量对AZ31镁合金达克罗涂层组织与耐蚀性能的影响,并分析其成膜机理。结果镁合金达克罗涂层主要由Zn、Mg、MgCrO_4、ZnO、MgO、Cr_2O_3、CrO_3组成,添加硼酸后,涂层中出现B_2O_3。MgCrO_4、MgO含量随着硼酸含量的增加而降低,而Cr_2O_3和CrO_3含量增加,并在硼酸加入量(质量分数)为2%的涂层中达到极限值。未添加硼酸的达克罗涂层表面存在微孔及微裂纹,添加2%硼酸的涂层的致密性能得到提高,当进一步增加硼酸含量时,涂层的致密性再次降低。添加2%硼酸涂层的腐蚀电流密度为5.068×10~(-5)A/cm~2,比未添加硼酸涂层时降低了1个数量级。涂层的电化学阻抗谱容抗弧半径和阻抗值,均在2%硼酸添加量时达到最大值,此时涂层耐蚀性能最好。结论硼酸具有促进成膜的作用,添加2%硼酸能够增加涂层的致密性,提高涂层的耐蚀性能。  相似文献   

3.
对挤压态ZM61-0.5Ca镁合金以不同的工艺进行热处理,改变合金微观组织结构,研究合金成分分布、析出相等对其在仿生溶液中(SBF)耐蚀性能的影响.通过光学金相显微镜、SEM扫描电镜、XRD观察测试其组织成分,通过浸泡腐蚀、析氢、电化学测试研究其耐腐蚀性能.结果表明合金在退火态时,其细小的析出相以球状沿晶界均匀分布,腐蚀过程均匀,耐蚀性能最优.  相似文献   

4.
镁合金以其优越的性能在工业上的应用越来越广泛,但是其耐蚀性、耐磨性较差,硬度较低的缺点限制了它的大量使用.利用改进的金属蒸发弧放电离子源(MEVVA)在AZ31镁合金表面注入Ti离子,形成Ti离子注入改性层,以期提高镁合金表面的耐蚀性能.注入能量为45keV,注入剂量为3×1017 cm-2.注入后镁合金表面形成厚度约为450nm的注入层,用SEM、XRD分析了Ti离子注入层的表面形貌和相结构.用CS300P型电化学工作站测试了注入前后镁合金的耐蚀性,结果表明镁合金表面耐蚀性能显著提高.  相似文献   

5.
采用高锰酸盐、钼酸盐、锡酸盐转化液分别对AZ91D镁合金进行表面化学转化,得到三种不同的化学转化膜。分别通过SEM、EDS和全浸试验研究不同转化膜的表面微观形貌、成分和腐蚀率,通过划格法和中性盐雾试验法研究转化膜外部有机涂层的附着性能和耐蚀性能。结果表明,高锰酸盐和钼酸盐转化膜表面具有大量微细裂纹,锡酸盐转化膜表面呈鱼鳞状,均为后续涂装提供了具有一定粗糙度的表面。锡酸盐转化膜的耐蚀性最好,高锰酸盐转化后并涂层的附着力和耐蚀性能最好。  相似文献   

6.
目的 为解决镁合金血管支架使血管内皮化、造成再狭窄等问题,在AZ31镁合金表面制备具有抗凝特性的肝素(HS)/蒙脱石(MMT)复合涂层,并研究其耐蚀性能.方法 采用水热法在AZ31镁合金表面制备钠蒙脱石(Na-MMT)涂层,在此基础上通过浸泡法以蒙脱石为载体,制备肝素/蒙脱石复合涂层.利用扫描电子显微镜(SEM)、傅里...  相似文献   

7.
8.
采用电弧喷涂方法,在AZ91D镁合金表面制备了NiCrAl、Al金属耐蚀涂层.利用扫描电镜分析、熟震实验、盐水浸泡实验、极化曲线等手段研究了涂层的结合强度和耐蚀性能.结果表明:金属涂层与基体结合紧密,孔隙率为9.68%,在350℃反复热震30次涂层表面未出现裂纹、翘起、脱落现象;NiCrAl、Al金属涂层在3.65%NaCl+5%H2SO4水溶液腐蚀介质中均表现出良好的钝化现象,其钝化区间分别为-0.3 V~0.6 V和0.2 V~0.7 V,Al涂层的工作电流为0.38 A,而NiCrAl涂层的工作电流仅为0.043 A.  相似文献   

9.
为改善AZ91镁合金的耐蚀性能,对AZ91镁合金表面进行不同种类离子注入(N、Cr、N+Cr)。通过X射线衍射仪(XRD)、扫描电镜(SEM)、电化学腐蚀系统和显微硬度仪分析了离子注入前后表面结构、耐蚀性能和显微硬度的变化。结果表明:基体由Mg和Al12Mg17相组成,注入后的试样形成了注入元素与基体元素间的金属间化合物和以固溶形式存在的注入元素。扫描电镜清晰地观察到双离子注入后试样的晶界和不同的相组织结构,说明离子注入对基体产生了明显的溅射作用。注入后自腐蚀电位和显微硬度都得到一定程度的提高,N离子注入试样的显微硬度提高达38.8%。  相似文献   

10.
AZ91D镁合金表面聚氨酯涂层耐腐蚀性能   总被引:1,自引:0,他引:1  
利用附着力及铅笔硬度测试、浸泡试验、盐雾试验、电化学试验等方法对AZ91D镁合金表面的聚氨酯涂层及环氧聚氨酯涂层形貌和性能进行了研究,并对两种涂层的腐蚀保护效果及机理进行了探讨。结果表明,这两种涂层都能显著提高镁合金的耐腐蚀性能,与基材附着良好且硬度高。与聚氨酯涂层PU相比,环氧聚氨酯涂层ER/PU的耐腐蚀效果更好。  相似文献   

11.
目的 通过在Zr-Ti基础成膜液中添加适宜的氧化剂,获得均匀致密的陶化膜,提高膜层对AZ80镁合金的保护性.方法 通过盐雾试验和SEM观察的结果,筛选出最佳的成膜液体系.通过测试陶化膜在3.5%NaCl溶液中的极化曲线,选出最佳的成膜液pH和成膜时间.利用XRD和XPS对膜层物相组成进行分析.通过盐雾和电化学试验对膜层...  相似文献   

12.
硅酸盐电解液体系中对AZ91D镁合金进行微弧氧化处理,膜层厚度相同但生长速率不同是本研究的实验设计特色。通过调节电源电压,使得膜层的生长速率分别为1μm/min、5μm/min、15μm/min和25μm/min,从而制备出生长速率不同但厚度相同的微弧氧化膜层,对膜层的微观结构及耐蚀性进行定性及定量研究,从实验室研究及实际应用角度对不同生长速率的各膜层进行综合对比分析。结果表明,生长速率对膜层的表面孔隙率、微孔的尺寸及数量,膜层的质量及质量厚度比,以及膜层耐蚀性均有较大的影响,但对膜层中的成分及元素分布基本无影响;在工业应用中,膜层生长速率的选择,应将膜层的生产效率和膜层性能统筹考量,本研究中生长速率为15μm/min的膜层显示出这样的优势。  相似文献   

13.
目的结合磷化与溶胶凝胶工艺,在AZ91镁合金表面制备磷化/溶胶凝胶复合膜。方法先对镁合金进行磷化处理,再多道涂覆SiO2溶胶凝胶层,通过正交试验结合电化学分析方法,优化溶胶凝胶层涂覆工艺,并分析磷化/溶胶凝胶复合膜的表面微观形貌和耐蚀性。结果溶胶凝胶层的优化沉积工艺如下:TEOS,TEOH,H2O,HCl体积比为28∶20∶10∶0.35,凝胶温度30℃,凝胶时间5 min,涂覆6次。在优化条件下所制备的复合膜结合力好且光滑,有少许微裂纹,与镁合金基体和磷化膜样品相比,其腐蚀电流密度最小,电化学阻抗最大。结论磷化/溶胶凝胶复合膜提高了镁合金的耐蚀性。  相似文献   

14.
目的在镁合金表面制备磷酸盐-高锰酸盐化学转化膜,以提高镁合金的耐蚀性能。方法以磷酸盐与高锰酸盐为转化处理液,在镁合金表面制备出化学转化膜,进而采用SEM、EDAX、XRD及电化学测试方法研究了转化温度、转化液p H值和转化时间对转化膜形貌、成分、厚度、结构和耐蚀性的影响。结果磷酸盐-高锰酸盐转化膜呈深紫色,由Mg、P、Mn和O元素组成,膜层表面存在网状裂纹,厚度为4~18μm,转化膜的耐蚀性随转化温度、p H值、转化时间的增加呈现先增加后降低的变化规律。结论磷酸盐-高锰酸盐转化膜由镁的磷酸盐组成。磷酸盐-高锰酸盐转化处理的最佳工艺条件为:转化温度40℃,转化液p H=3.5和转化时间15 min。经磷酸盐-高锰酸盐化学转化处理后,镁合金的耐蚀性能得到了明显的提高。  相似文献   

15.
目的镁合金具有良好的生物相容性和可降解性,作为生物医用材料具有广泛的应用前景。有效地提高镁合金的耐蚀性能,对镁合金作为医用材料具有重要意义。方法利用浸泡法在AZ31镁合金基体表面层层组装制备聚苯乙烯磺酸钠(PSS)、聚丙烯胺盐酸盐(PAH)多层膜,并将获得的样品采用水热法在Ca(NO)_3、NaH_2PO_4、Na_2CO_3溶液中诱导钙磷涂层(羟基磷灰石)的形成。利用高分辨扫描电子显微镜、傅里叶红外光谱、X射线光电子能谱对Ca-P/(PAH/PSS)5/Mg复合膜层的表面形貌、化学成分进行了表征,通过析氢和电化学实验(包括极化曲线及阻抗谱)研究了Ca-P/(PAH/PSS)5/Mg涂层的耐腐蚀性能。结果Ca-P/(PAH/PSS)5/Mg膜层厚度约为7.67μm,表现为立体叶草状,在镁合金表面紧密排列。Ca-P/(PAH/PSS)5/Mg涂层耐蚀性提高一个数量级,其腐蚀电流密度从镁合金AZ31的3.69×10–5 A/cm2降低到1.61×10–6 A/cm~2,同时析氢速率降低。结论该涂层可以有效地提高镁合金的耐蚀性能,其成因则主要归功于组装的两种聚电解质的类生物矿化作用。这种诱导所得钙磷膜层对镁合金在生物医用领域的应用提供了新的思路。  相似文献   

16.
目的在镁合金表面制备稀土铈盐转化膜,以改善镁合金的耐蚀性能。方法利用化学转化技术在镁合金表面制备出稀土铈盐转化膜,进而采用SEM、EDAX及电化学测试技术等系统研究铈盐浓度、添加剂含量、转化时间和转化温度对转化膜形貌、成分和耐蚀性能的影响。结果稀土铈盐转化膜呈金黄色,由Mg、Ce和O组成,表面存在网状裂纹。转化膜的耐蚀性随铈盐浓度、添加剂含量、转化温度、转化时间的增加呈现先增加后降低的变化规律。结论稀土铈盐转化膜由Mg和Ce的氢氧化物和氧化物组成。铈盐转化膜的最佳工艺条件为:Ce(NO3)3质量浓度10~15 g/L,H2O2添加含量25~50 m L/L,转化温度40℃,转化时间30 min。经稀土铈盐转化处理后,镁合金的耐蚀性能得到了明显的改善。  相似文献   

17.
目的通过含有硬脂酸添加剂的阳极氧化工艺,获得耐蚀性优异的镁合金阳极氧化膜。方法采用直流电源阳极氧化法,在含有2 g/L硬脂酸的碱性氧化液中进行阳极氧化。通过SEM、ImageJ软件和TT230测厚仪分析氧化膜的微观形貌和膜厚,通过FTIR、XPS和XRD分析膜层成分,通过电化学测试检测膜层的耐蚀性能。结果氧化液中添加硬脂酸后,制备的氧化膜层孔隙率降低,孔径减小,孔洞数量下降,厚度增大,致密度提高。膜层的自腐蚀电流密度为3.15×10^–7 A/cm^2,与未加硬脂酸制备的氧化膜相比,降低了2个数量级,耐蚀性显著提升。结论硬脂酸添加剂通过提升成膜电压,增强火花放电效应、表面活性剂作用,改变膜层成分等机制,提升膜层耐蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号