首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对云南含钪赤泥原矿含TFe 25.68%、Sc_2O_3 70.66 g/t,钪主要以类质同象形式分散于金红石、辉石、长石、白云母、方解石等矿物中,铁、钪分离困难,提出了氯化钠离析焙烧—弱磁选—盐酸浸出的选冶联合工艺处理该含钪赤泥,使铁从赤铁矿转为以金属铁、磁铁矿为主的新物相,破坏载钪矿物的晶体结构,为铁、钪分离创造有利条件。试验结果表明:在离析焙烧温度950℃、离析焙烧时间60 min、氯化钠用量10%、焦炭用量15%、焦炭粒度–0.5~0.25 mm、弱磁选磁场强度H=0.12 T、弱磁选磨矿细度为0.045 mm占95%、盐酸用量30%、浸出温度55℃、浸出时间120 min、浸出液固比R=2∶3的综合工艺条件下,获得了铁品位为73.99%,含钪5.22 g/t,铁回收率为88.99%的铁精矿;钪浸出率为96.78%,浸出渣中的钪含量为6.37 g/t,铁、钪分离效果显著。MLA、SEM、EPMA分析结果显示:含钪赤泥经过氯化钠离析焙烧后,铁从赤铁矿(Fe_2O_3)转变为以金属铁(Fe)、磁铁矿(Fe_3O_4)为主的新铁物相及少量的氧化亚铁(FeO)、硅酸铁(Fe_2SiO_4);浸出渣主要成分为SiO_2、CaO、Al_2O_3,与浸出前相比较,CaO、Al_2O_3降低比较明显,浸出渣中没有明显的Sc谱线峰值,这表明弱磁选尾矿经盐酸浸出后,钪绝大部分被溶解掉进入浸出液中,且钪的溶解较为彻底,也进一步验证了含钪赤泥采用氯化钠离析焙烧—弱磁选—盐酸浸出分离铁、钪比较合理,且铁、钪分离效果显著。  相似文献   

2.
运用小型循环流化床锅炉,针对铁品位为49.20%、磷质量分数为1.16%的湖北某鲕状赤铁矿进行磁化焙烧-磁选试验研究.试验结果表明,将粒径为106~150 μm的鲕状赤铁矿在700 ℃下焙烧15 min,选取磨矿后粒径在74 μm以下的颗粒质量分数为85%的焙烧矿物,运用湿式磁选管在139.22 kA/m的磁场强度下对筛选后的焙烧矿物进行磁选抛尾,可以获得铁品位为55.12%、全铁回收率为70.11%、磷质量分数为0.67%的铁精矿.研究表明,运用循环流化床局部还原性气氛高速磁化焙烧铁矿石是可行的,运用该磁化焙烧-磁选工艺流程可以达到一定的提铁降磷效果.  相似文献   

3.
云南文山某地拜耳法赤泥中全铁(TFe)的质量分数为26.86%,主要含铁矿物为Fe2O3和FeSiO3,铁是影响Sc, Ti, Ga等有价组分提取的关键金属.基于此,本研究提出钙盐氯化还原焙烧—弱磁选深度提铁工艺,将拜耳法赤泥与焦炭、氯化钙、次氯酸钙按一定比例混匀后置入焙烧炉中进行氯化还原焙烧,强化铁从弱磁性铁矿物转变为强磁性铁矿物,焙烧矿冷却后经湿式磨矿至一定细度的物料,采用弱磁选回收铁,获得铁精矿.研究结果表明:添加CaCl2和Ca(ClO)2可促进FeO转变为FeCl3后,在焦炭表面被还原成Fe0,方解石分解产生的CaO可促进FeSiO3被还原成Fe0,显著提高焙烧矿中金属铁的质量分数,有利于焙烧矿弱磁选回收铁.在m(赤泥)∶m(焦炭)∶m(氯化钙)∶m(次氯酸钙)=100∶16∶15∶8、焙烧温度为1 373 K、焙烧时间为80 min、弱磁选磁场强度为0.18 T、弱磁选磨矿细度小...  相似文献   

4.
针对云南含钪赤泥原矿含TFe 25.68%、Sc2O3 70.66 g/t,钪主要以类质同象形式分散于金红石、辉石、长石、白云母、方解石等矿物中,铁、钪分离困难,提出了氯化钠离析焙烧-弱磁选-盐酸浸出的选冶联合工艺处理该含钪赤泥,使铁从赤铁矿转为以金属铁、磁铁矿为主的新物相,破坏载钪矿物的晶体结构,为铁、钪分离创造有利条件。试验结果表明:在离析焙烧温度950 ℃、离析焙烧时间60 min、氯化钠用量10%、焦炭用量15%、焦炭粒度-0.5~0.25 mm、弱磁选磁场强度H=0.12 T、弱磁选磨矿细度为<0.045 mm占95%、盐酸用量30%、浸出温度55 ℃、浸出时间120 min、浸出液固比 R =2∶3的综合工艺条件下,获得了铁品位为73.99%,含钪5.22 g/t,铁回收率为88.99%的铁精矿;钪浸出率为96.78%,浸出渣中的钪含量为6.37 g/t,铁、钪分离效果显著。MLA、SEM、EPMA分析结果显示:含钪赤泥经过氯化钠离析焙烧后,铁从赤铁矿(Fe2O3)转变为以金属铁(Fe)、磁铁矿(Fe3O4)为主的新铁物相及少量的氧化亚铁(FeO)、硅酸铁(Fe2SiO4);浸出渣主要成分为SiO2、CaO、Al2O3,与浸出前相比较,CaO、Al2O3降低比较明显,浸出渣中没有明显的Sc谱线峰值,这表明弱磁选尾矿经盐酸浸出后,钪绝大部分被溶解掉进入浸出液中,且钪的溶解较为彻底,也进一步验证了含钪赤泥采用氯化钠离析焙烧-弱磁选-盐酸浸出分离铁、钪比较合理,且铁、钪分离效果显著。  相似文献   

5.
针对云南某褐铁矿选厂强磁选后得到的铁粗精矿品位(Fe 52.35%)较低的问题,在工艺矿物学研究的基础上进行试验研究:在催化剂添加量14%,还原剂添加量12%,焙烧温度1 050℃,焙烧时间30 min的条件下,采用“强化还原焙烧—弱磁选”工艺获得了精矿产率67.95%、品位TFe 70.89%、回收率91.94%的良好技术指标。  相似文献   

6.
对河北某地含铁品位38.57%的鲕状(菱)赤铁矿进行了选矿试验研究,考察了该矿石的工艺矿物学特征,重点研究了采用磁选、浮选、磁化焙烧.弱磁选等选别工艺的分选效果,试验结果表明磁化焙烧-弱磁选工艺是分选此类难选铁矿石的有效方法.在温度750℃,焙烧时间80min,煤粉配比5%的最佳焙烧条件下,焙烧矿经弱磁选可以获得精矿铁品位为59.94%.回收率84.87%的良好指标,并通过XRD分析对磁化焙烧的反应机理进行了初步的探讨.  相似文献   

7.
鄂西宁乡式鲕状赤铁矿嵌布粒度极细,SiO2、Al2O3、P等杂质含量高,用其生产的铁精矿很难达到冶炼要求.针对铁品位为43.76%,磷含量为0.84%的鄂西鲕状赤铁矿进行提铁降磷试验研究,通过对磁化焙烧温度、磁化焙烧时间、还原煤的配比等影响因素的条件试验,确定在焙烧时间60 min,焙烧温度750℃,还原煤11%(质量比)的最佳焙烧条件.焙烧产品磨矿至-0.038 mm占80.54%、用永磁选机进行弱磁选,获得了铁品位54.10%、铁回收率93.19%、磷含量0.80%的粗铁精矿.进行反浮选药剂制度试验,得到了铁品位58.95%、铁综合回收率80%、磷含量0.50%的铁精矿,其最佳浮选药剂制度为NaOH 750 g/t,淀粉800 g/t,石灰500 g/t,RA-715 750 g/t,G310 107.73 g/t,浮选温度30℃.在此浮选制度下,进行一粗一精试验,精选石灰和捕收剂用量减半,可得铁品位59.87%,磷含量降至0.28%,综合回收率71.08%,综合试验结果表明,本文探索的工艺流程具有很大的可行性,能够为鲕状赤铁矿的选矿利用提供参考.  相似文献   

8.
对广西某含铁品位为52.07%、磁性率(FeO/TFe)为2.11%的难选赤褐铁矿矿石进行理化性能分析和矿物工艺学研究,并进行了强磁选、还原焙烧—磁选选矿试验,确定还原焙烧—磁选可以获得较好的选别指标为:精矿铁品位达63.27%,产率达82.70%,铁回收率95.99%,有害元素硫,磷都较低,SiO2、Al2O3、CaO、MgO的含量都能满足高炉冶炼的要求,属于优质铁精矿.  相似文献   

9.
硫酸渣磁化焙烧—磁选提铁降硫   总被引:1,自引:0,他引:1  
硫酸渣铁品位为55.08%,其中有害元素硫的含量为1.3%.为高效利用硫酸渣,必须提高铁含量、降低硫磷等有害元素.硫酸渣试样直接进行弱磁选,得到铁精矿品位60.54%,精矿回收率仅为54.46%,采用磁化焙烧-弱磁选的方法来进行选铁试验,通过对磁化焙烧时间、磁化焙烧温度、还原剂的质量配比等条件试验,确定了在焙烧时间40 min,焙烧温度750℃,还原剂10%的最佳焙烧条件.焙烧矿磨矿至-0.074 mm 97.02%,用弱磁选管进行磁选的最佳试验条件,在此焙烧条件下,进行一粗一精的磁选,获得了铁品位64.57%,精矿回收率86.99%,硫含量降低到0.13%.  相似文献   

10.
针对我国低品位铁矿石嵌布粒度极细,成分复杂,难提难选的现况,运用循环流化床和磁选管进行劣质铁矿石的流化焙烧 磁选试验研究,试验采用CO、N2的混合气体营造还原性气氛(其中CO体积分数为10%),将粒径为1 mm以下的新疆某低品位铁矿石(原矿铁品位为9.63%)于850 ℃焙烧10 min,得到强磁性的磁铁矿,将焙烧产物破碎细磨(磨至200 目以下占75%),利用湿式磁选管在71.66 kA/m的磁场强度下进行弱磁选抛尾,可以得到铁精矿品位为46.25%,全铁回收率为25.52%的选矿指标.研究表明,运用循环流化床焙烧-弱磁选的方法提质铁矿石,可以有效地减少焙烧时间,在保证选矿达标的基础上,有效地降低生产周期.  相似文献   

11.
试验用红土镍矿属于褐铁矿型红土镍矿,其主要矿相为针铁矿.在煤粉做还原剂,硫酸钠做添加剂条件下,红土镍矿在一定温度下焙烧一定时间后得到的焙烧产物中Ni主要以Fe-Ni合金形式存在,通过磁选可以使其得到有效的富集.本文探究了各工艺参数对磁选后镍铁精矿中镍品位及镍回收率的影响.结果表明,当红土镍矿、硫酸钠和煤粉的质量比为100∶22∶9,焙烧温度为1 200℃,焙烧时间为80 min,磁选磁场强度为150 m T条件下,可以得到镍品位为11.36%,镍回收率为83.35%的镍铁精矿,该精矿可直接作为冶炼不锈钢的原料.  相似文献   

12.
为了有效利用矿样的难溶性钾资源,针对湖北宜昌地区的富钾页岩,首先直接用硫酸浸取提钾,然后在页岩中加入一定质量配比的磷矿后再用硫酸浸取提钾.考查了矿样质量配比,硫酸质量分数,硫酸用量,反应时间对钾提取的影响.结果表明:在常温常压下钾岩矿直接用硫酸提钾,浸出率只有12%左右;富钾页岩矿粉与磷矿矿粉按一定比例混合后用硫酸得到较好的钾的浸出率.最佳的工艺条件为:富钾页岩矿与磷矿的质量比为0.8,硫酸用量为4 m L/g,硫酸质量分数为60%,常温下反应2 h,钾的浸出率为73%左右.  相似文献   

13.
针对泰国某铁矿中主要金属矿物有磁铁矿、赤铁矿、褐铁矿以及针铁矿的提铁降杂的研究,提出对原矿中-5 mm粒级研究采用"磨矿—弱磁选—强磁选"联合工艺,最终得到铁精矿产率为73.59%,铁品位为56.77%,回收率为81.31%.  相似文献   

14.
研究了+100,100~74,74~45,-45μm 4个不同粒级对重庆巫山某鲕状赤褐铁矿悬浮焙烧过程的影响,并通过扫描电镜及能谱分析、磁性分析、X射线衍射分析、热力学分析等手段对其机理进行研究.结果表明:悬浮焙烧前后,矿物颗粒的微观形貌及嵌布特征并未发生明显变化;悬浮焙烧后,鲕状赤褐铁矿中的弱磁性铁矿物可以转变为强磁性铁矿物,除-45μm粒级外,其他粒级物料的比磁化率和磁化强度显著提高,且物料颗粒越细,其比磁化率和磁化强度就越高.鲕状赤褐铁矿石中的赤铁矿转变成磁铁矿,当物料粒度在-45μm时,有FeO相存在,说明发生了过还原反应.在一定温度条件下,赤铁矿很容易被还原为磁铁矿,且有稳定的Fe3O4相存在.因此,控制好焙烧物料的粒度对于获得较好的悬浮焙烧质量产品以及提高焙烧效率至关重要.  相似文献   

15.
对中国湖北某硅质中低品位磷矿的工艺矿相进行了研究,主要分析了其化学组成、矿物组成、胶磷矿的嵌布粒度和嵌布特征,结果显示:原矿中的主要成分为P2O5、CaO、SiO2等;矿物组成主要为胶磷矿和石英质矿物;胶磷矿嵌布粒度为:-0.313 6+0.039 2 mm粒级占90.60%,属于细粒嵌布;胶磷矿同脉石矿物的嵌镶关系主要是包裹嵌镶和毗连嵌镶.根据工艺矿相分析结果制定出了相关的选矿工艺路线,并对该工艺路线进行矿相跟踪考察,结果显示制定出的浮选工艺符合中低品位磷矿选矿要求.  相似文献   

16.
石菉铜矿属氧化铜矿,并伴生有一定数量的赤、褐铁矿。一直采用“离析焙烧”法处理这种矿石。离析焙烧窑内呈还原性气氛,氧化铜经离析作用成为金属铜屑,赤、褐铁矿被还原转变成为磁铁矿。离析窑的产品,经岩矿——浮选回收铜,铁留在尾矿中。据历年生产中测定,尾矿中含铁一般在20%以上,应具有回收利用的价值。为了减少尾矿量和综合回收其中的铁,石菉铜矿提出对尾矿进行回收铁的研究。目的是寻找合适的选矿方法和合理的工艺流程,获得含铁量50%或更高的品位铁精矿。  相似文献   

17.
某细粒难选褐铁矿的分选研究   总被引:1,自引:0,他引:1  
对某褐铁矿进行了磁选、焙烧-磁选、重选及浮选实验研究,研究结果表明,采用强磁选工艺流程分选该褐铁矿可以获得较满意的指标。经正交试验优化后,一次磁选可使褐铁矿品位从32.91%提高到58.64%,回收率达90.87%,产率达51%;焙烧磁选工艺可获得铁精矿品位达61.16%,回收率达67.39%,产率达36%。从经济且环保的角度出发,认为该细粒难选褐铁矿的分选采用强磁选工艺流程比较适宜。  相似文献   

18.
世界对铁矿石需求的不断增长导致磁铁矿资源逐渐枯竭,高磷铁矿的利用成为焦点.分别以碳酸钙(CaCO3)、氯化钙(CaCl2)、硫酸钙(CaSO4)为添加剂,使用直接还原-磨矿-磁选的方法,从热力学、铁金属化率、矿物组成和微观结构等方面研究了高磷铁矿(磷主要以Fe3PO7和磷灰石形式赋存)直接还原提铁降磷的过程.结果表明:...  相似文献   

19.
磁化矿石颗粒模型及磁选过程分析   总被引:1,自引:0,他引:1  
基于磁选过程中颗粒尺寸、磁场强度和磁选精矿品位三者之间的关系,建立磁化矿石颗粒模型,对其进行理论分析与计算,确定最佳磁场强度,并进行磁化矿石的磁选研究。结果表明:在配煤量4%(质量分数),焙烧温度850℃,焙烧时间60 min,磨矿细度-0.074 mm占60%(质量分数),磁场强度为40 mT的条件下,得到铁品位57.7%(质量分数),铁回收率90.3%(质量分数)的铁精矿,较好地实现了铁精矿的富集和回收。  相似文献   

20.
云南某地的硅酸镍矿属面型风化壳矿床,资源储量大,但成分复杂、品位较低,常规选矿方法无法对其利用,是一种难选冶的矿种。根据高镁型硅酸镍矿的性质,采用氯化离析-弱磁选冶联合的方法进行条件试验研究,分别进行了氯化剂的用量试验、还原剂的用量试验、不同助剂的用量试验、焙烧温度试验、焙烧时间试验及磁选磁场强度试验,并选取最优的条件进行了重复试验。试验结果表明:氯化剂用量为30%,还原剂用量为15%,助剂选用Ca O、添加量为10%,焙烧温度为1 100℃,焙烧时间为90 min,磁场强度为1.2T,为最佳的试验条件,可获得镍精矿品位8.07%,回收率75.27%的选矿指标,为合理利用硅酸镍矿提供了技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号