首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Despite constant advances in the field of pediatric oncology, the survival rate of high-risk neuroblastoma patients remains poor. The molecular and genetic features of neuroblastoma, such as MYCN amplification and stemness status, have established themselves not only as potent prognostic and predictive factors but also as intriguing targets for personalized therapy. Novel thiosemicarbazones target both total level and activity of a number of proteins involved in some of the most important signaling pathways in neuroblastoma. In this study, we found that di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) potently decreases N-MYC in MYCN-amplified and c-MYC in MYCN-nonamplified neuroblastoma cell lines. Furthermore, DpC succeeded in downregulating total EGFR and phosphorylation of its most prominent tyrosine residues through the involvement of NDRG1, a positive prognostic marker in neuroblastoma, which was markedly upregulated after thiosemicarbazone treatment. These findings could provide useful knowledge for the treatment of MYC-driven neuroblastomas that are unresponsive to conventional therapies.  相似文献   

3.
Neuroblastoma is a common childhood cancer possessing a significant risk of death. This solid tumor manifests variable clinical behaviors ranging from spontaneous regression to widespread metastatic disease. The lack of promising treatments calls for new research approaches which can enhance the understanding of the molecular background of neuroblastoma. The high proliferation of malignant neuroblastoma cells requires efficient energy metabolism. Thus, we focus our attention on energy pathways and their role in neuroblastoma tumorigenesis. Recent studies suggest that neuroblastoma-driven extracellular vesicles stimulate tumorigenesis inside the recipient cells. Furthermore, proteomic studies have demonstrated extracellular vesicles (EVs) to cargo metabolic enzymes needed to build up a fully operative energy metabolism network. The majority of EV-derived enzymes comes from glycolysis, while other metabolic enzymes have a fatty acid β-oxidation and tricarboxylic acid cycle origin. The previously mentioned glycolysis has been shown to play a primary role in neuroblastoma energy metabolism. Therefore, another way to modify the energy metabolism in neuroblastoma is linked with genetic alterations resulting in the decreased activity of some tricarboxylic acid cycle enzymes and enhanced glycolysis. This metabolic shift enables malignant cells to cope with increasing metabolic stress, nutrition breakdown and an upregulated proliferation ratio.  相似文献   

4.
5.
Prognosis of metastatic neuroblastoma is very poor. Its treatment includes induction chemotherapy, surgery, high-dose chemotherapy, radiotherapy, and maintenance with retinoic acid, associated with the anti-GD2 monoclonal antibody (ch14.18) dinutuximab. Immunotherapy determined a significant improvement in survival rate and is also utilized in relapsed and resistant neuroblastoma patients. Five courses of dinutuximab 100 mg/m2 are usually administered as a 10-day continuous infusion or over 5 consecutive days every 5 weeks. Dinutuximab targets the disialoganglioside GD2, which is highly expressed on neuroblastoma cells and minimally present on the surface of normal human neurons, peripheral pain fibers, and skin melanocytes. Anti GD2 antibodies bind to surface GD2 and determine the lysis of neuroblastoma cells induced by immune response via the antibody-dependent cellular cytotoxicity and the complement-dependent cytotoxicity. Dinutuximab has significant side effects, including neuropathic pain, peripheral neuropathy, hypersensitivity reactions, capillary leak syndrome, photophobia, and hypotension. The most important side effect is neuropathic pain, which is triggered by the same antibody–antigen immune response, but generates ectopic activity in axons, which results in hyperalgesia and spontaneous pain. Pain can be severe especially in the first courses of dinutuximab infusion, and requires the administration of gabapentin and continuous morphine infusion. This paper will focus on the incidence, mechanisms, characteristics, and treatment of neuropathic pain and peripheral neuropathy due to dinutuximab administration in neuroblastoma patients.  相似文献   

6.
Neuroblastoma is a common extracranial solid tumour of childhood, responsible for 15% of cancer-related deaths in children. Prognoses vary from spontaneous remission to aggressive disease with extensive metastases, where treatment is challenging. Tumours are thought to arise from sympathoadrenal progenitor cells, which derive from an embryonic cell population called neural crest cells that give rise to diverse cell types, such as facial bone and cartilage, pigmented cells, and neurons. Tumours are found associated with mature derivatives of neural crest, such as the adrenal medulla or paraspinal ganglia. Sympathoadrenal progenitor cells express anaplastic lymphoma kinase (ALK), which encodes a tyrosine kinase receptor that is the most frequently mutated gene in neuroblastoma. Activating mutations in the kinase domain are common in both sporadic and familial cases. The oncogenic role of ALK has been extensively studied, but little is known about its physiological role. Recent studies have implicated ALK in neural crest migration and sympathetic neurogenesis. However, very few downstream targets of ALK have been identified. Here, we describe pathological activation of ALK in the neural crest, which promotes proliferation and migration, while preventing differentiation, thus inducing the onset of neuroblastoma. Understanding the effects of ALK activity on neural crest cells will help find new targets for neuroblastoma treatment.  相似文献   

7.
8.
Neuroblastoma is the most common extracranial solid tumor of childhood, with heterogeneous clinical manifestations ranging from spontaneous regression to aggressive metastatic disease. The calcium-sensing receptor (CaSR) is a G protein-coupled receptor (GPCR) that senses plasmatic fluctuation in the extracellular concentration of calcium and plays a key role in maintaining calcium homeostasis. We have previously reported that this receptor exhibits tumor suppressor properties in neuroblastoma. The activation of CaSR with cinacalcet, a positive allosteric modulator of CaSR, reduces neuroblastoma tumor growth by promoting differentiation, endoplasmic reticulum (ER) stress and apoptosis. However, cinacalcet treatment results in unmanageable hypocalcemia in patients. Based on the bias signaling shown by calcimimetics, we aimed to identify a new drug that might exert tumor-growth inhibition similar to cinacalcet, without affecting plasma calcium levels. We identified a structurally different calcimimetic, AC-265347, as a promising therapeutic agent for neuroblastoma, since it reduced tumor growth by induction of differentiation, without affecting plasma calcium levels. Microarray analysis suggested biased allosteric modulation of the CaSR signaling by AC-265347 and cinacalcet towards distinct intracellular pathways. No upregulation of genes involved in calcium signaling and ER stress were observed in patient-derived xenografts (PDX) models exposed to AC-265347. Moreover, the most significant upregulated biological pathways promoted by AC-265347 were linked to RHO GTPases signaling. AC-265347 upregulated cancer testis antigens (CTAs), providing new opportunities for CTA-based immunotherapies. Taken together, this study highlights the importance of the biased allosteric modulation when targeting GPCRs in cancer. More importantly, the capacity of AC-265347 to promote differentiation of malignant neuroblastoma cells provides new opportunities, alone or in combination with other drugs, to treat high-risk neuroblastoma patients.  相似文献   

9.
10.
Histone deacetylases (HDACs) are important epigenetic regulators involved in many diseases, especially cancer. Five HDAC inhibitors have been approved for anticancer therapy and many are in clinical trials. Among the 11 zinc-dependent HDACs, HDAC10 has received relatively little attention by drug discovery campaigns, despite its involvement, e. g., in the pathogenesis of neuroblastoma. This is due in part to a lack of robust enzymatic conversion assays. In contrast to the protein lysine deacetylase and deacylase activity of most other HDAC subtypes, it has recently been shown that HDAC10 has strong preferences for deacetylation of oligoamine substrates like acetyl-putrescine or -spermidine. Hence, it is also termed a polyamine deacetylase (PDAC). Here, we present the first fluorescent enzymatic conversion assay for HDAC10 using an aminocoumarin-labelled acetyl-spermidine derivative to measure its PDAC activity, which is suitable for high-throughput screening. Using this assay, we identified potent inhibitors of HDAC10-mediated spermidine deacetylation in vitro. Based on the oligoamine preference of HDAC10, we also designed inhibitors with a basic moiety in appropriate distance to the zinc binding hydroxamate that showed potent inhibition of HDAC10 with high selectivity, and we solved a HDAC10-inhibitor structure using X-ray crystallography. We could demonstrate selective cellular target engagement for HDAC10 but a lysosomal phenotype in neuroblastoma cells that was previously associated with HDAC10 inhibition was not observed. Thus, we have developed new chemical probes for HDAC10 that allow further clarification of the biological role of this enzyme.  相似文献   

11.
Gene expression control mediated by microRNAs and epigenetic remodeling of chromatin are interconnected processes often involved in feedback regulatory loops, which strictly guide proper tissue differentiation during embryonal development. Altered expression of microRNAs is one of the mechanisms leading to pathologic conditions, such as cancer. Several lines of evidence pointed to epigenetic alterations as responsible for aberrant microRNA expression in human cancers. Rhabdomyosarcoma and neuroblastoma are pediatric cancers derived from cells presenting features of skeletal muscle and neuronal precursors, respectively, blocked at different stages of differentiation. Consistently, tumor cells express tissue markers of origin but are unable to terminally differentiate. Several microRNAs playing a key role during tissue differentiation are often epigenetically downregulated in rhabdomyosarcoma and neuroblastoma and behave as tumor suppressors when re-expressed. Recently, inhibition of epigenetic modulators in adult tumors has provided encouraging results causing re-expression of anti-tumor master gene pathways. Thus, a similar approach could be used to correct the aberrant epigenetic regulation of microRNAs in rhabdomyosarcoma and neuroblastoma. The present review highlights the current insights on epigenetically deregulated microRNAs in rhabdomyosarcoma and neuroblastoma and their role in tumorigenesis and developmental pathways. The translational clinical implications and challenges regarding modulation of epigenetic chromatin remodeling/microRNAs interconnections are also discussed.  相似文献   

12.
Neuroblastoma (NB) is an aggressive infancy tumor, leading cause of death among preschool age diseases. Here we focused on characterization of exosomal DNA (exo-DNA) isolated from plasma cell-derived exosomes of neuroblastoma patients, and its potential use for detection of somatic mutations present in the parental tumor cells. Exosomes are small extracellular membrane vesicles secreted by most cells, playing an important role in intercellular communications. Using an enzymatic method, we provided evidence for the presence of double-stranded DNA in the NB exosomes. Moreover, by whole exome sequencing, we demonstrated that NB exo-DNA represents the entire exome and that it carries tumor-specific genetic mutations, including those occurring on known oncogenes and tumor suppressor genes in neuroblastoma (ALK, CHD5, SHANK2, PHOX2B, TERT, FGFR1, and BRAF). NB exo-DNA can be useful to identify variants responsible for acquired resistance, such as mutations of ALK, TP53, and RAS/MAPK genes that appear in relapsed patients. The possibility to isolate and to enrich NB derived exosomes from plasma using surface markers, and the quick and easy extraction of exo-DNA, gives this methodology a translational potential in the clinic. Exo-DNA can be an attractive non-invasive biomarker for NB molecular diagnostic, especially when tissue biopsy cannot be easily available.  相似文献   

13.
Neuroblastoma is a rare disease. Rare are also the possibilities to test new therapeutic options for neuroblastoma in clinical trials. Despite the constant need to improve therapy and outcomes for patients with advanced neuroblastoma, clinical trials currently only allow for testing few substances in even fewer patients. This increases the need to improve and advance preclinical models for neuroblastoma to preselect favorable candidates for novel therapeutics. Here we propose the use of a new patient-derived 3D slice-culture perfusion-based 3D model in combination with rapid treatment evaluation using isothermal microcalorimetry exemplified with treatment with the novel carbonic anhydrase IX and XII (CAIX/CAXII) inhibitor SLC-0111. Patient samples showed a CAIX expression of 18% and a CAXII expression of 30%. Corresponding with their respective CAIX expression patterns, the viability of SH-EP cells was significantly reduced upon treatment with SLC-0111, while LAN1 cells were not affected. The inhibitory effect on SH-SY5Y cells was dependent on the induction of CAIX expression under hypoxia. These findings corresponded to thermogenesis of the cells. Patient-derived organotypic slice cultures were treated with SLC-0111, which was highly effective despite heterogeneity of CAIX/CAXII expression. Thermogenesis, in congruence with the findings of the histological observations, was significantly reduced in SLC-0111-treated samples. In order to extend the evaluation time, we established a perfusion-based approach for neuroblastoma tissue in a 3D perfusion-based bioreactor system. Using this system, excellent tissue quality with intact tumor cells and stromal structure in neuroblastoma tumors can be maintained for 7 days. The system was successfully used for consecutive drug response monitoring with isothermal microcalorimetry. The described approach for drug testing, relying on an advanced 3D culture system combined with a rapid and highly sensitive metabolic assessment, can facilitate development of personalized treatment strategies for neuroblastoma.  相似文献   

14.
15.
Apoptosis, as a programmed cell death process, is essential for the maintenance of tissue function in organisms. Alteration of this process is linked to many diseases. Over-expression of clusterin (Clu) can antagonize apoptosis in various cells. Selenium (Se) is an essential trace element for human health. Its biological function is also associated with cell apoptosis. To explore the function of Clu and the impact of Se in the process of apoptosis, several short-hairpin RNAs (shRNA) were designed for the construction of two sets of recombinant plasmids: one set for plasmid-transfection of mouse neuroblastoma N2a cells (N2a cells); and the other set for lentiviral infection of human neuroblastoma SH-SY5Y cells (SH-SY5Y cells). These shRNAs specifically and efficiently interfered with the intracellular expression of Clu at both the mRNA and protein levels. The Clu-knockdown cells showed apoptosis-related features, including down-regulation of antioxidative capacity and the Bcl-2/Bax ratio and up-regulation of caspase-8 activity. Se-methylselenocysteine (MSC) at an optimum concentration of 1 μM could reverse the alteration in antioxidative capacity, Bcl2/Bax ratio and caspase-8 activity caused by Clu-knockdown, thus inhibiting apoptosis and maintaining cell viability. The results hereby imply the potentiality of Clu and Se in neuroprotection.  相似文献   

16.
Pevonedistat is a neddylation inhibitor that blocks proteasomal degradation of cullin–RING ligase (CRL) proteins involved in the degradation of short-lived regulatory proteins, including those involved with cell-cycle regulation. We determined the sensitivity and mechanism of action of pevonedistat cytotoxicity in neuroblastoma. Pevonedistat cytotoxicity was assessed using cell viability assays and apoptosis. We examined mechanisms of action using flow cytometry, bromodeoxyuridine (BrDU) and immunoblots. Orthotopic mouse xenografts of human neuroblastoma were generated to assess in vivo anti-tumor activity. Neuroblastoma cell lines were very sensitive to pevonedistat (IC50 136–400 nM). The mechanism of pevonedistat cytotoxicity depended on p53 status. Neuroblastoma cells with mutant (p53MUT) or reduced levels of wild-type p53 (p53si-p53) underwent G2-M cell-cycle arrest with rereplication, whereas p53 wild-type (p53WT) cell lines underwent G0-G1 cell-cycle arrest and apoptosis. In orthotopic neuroblastoma models, pevonedistat decreased tumor weight independent of p53 status. Control mice had an average tumor weight of 1.6 mg + 0.8 mg versus 0.5 mg + 0.4 mg (p < 0.05) in mice treated with pevonedistat. The mechanism of action of pevonedistat in neuroblastoma cell lines in vitro appears p53 dependent. However, in vivo studies using mouse neuroblastoma orthotopic models showed a significant decrease in tumor weight following pevonedistat treatment independent of the p53 status. Novel chemotherapy agents, such as the NEDD8-activating enzyme (NAE) inhibitor pevonedistat, deserve further study in the treatment of neuroblastoma.  相似文献   

17.
Sjögren’s syndrome (SS) is a systemic autoimmune disease characterized by chronic inflammation of the salivary and lacrimal glands and extra-glandular lesions. Adaptive immune response including T- and B-cell activation contributes to the development of SS. However, its pathogenesis has not yet been elucidated. In addition, several patients with SS present with the type I interferon (IFN) signature, which is the upregulation of the IFN-stimulated genes induced by type I IFN. Thus, innate immune responses including type I IFN activity are associated with SS pathogenesis. Recent studies have revealed the presence of activation pattern recognition receptors (PRRs) including Toll-like receptors, RNA sensor retinoic acid-inducible gene I and melanoma differentiation-associated gene 5, and inflammasomes in infiltrating and epithelial cells of the salivary glands among patients with SS. In addition, the activation of PRRs via the downstream pathway such as the type I IFN signature and nuclear factor kappa B can directly cause organ inflammation, and it is correlated with the activation of adaptive immune responses. Therefore, this study assessed the role of the innate immune signal pathway in the development of inflammation and immune abnormalities in SS.  相似文献   

18.
19.
The generation of an antioxidant has been shown to be associated with the dramatic increase in resistance to lipid peroxidation which occurs during the differentiation of mouse neuroblastoma cells in culture. The antioxidant has been isolated from the neuroblastoma neutral lipid fraction and partially characterized by means of low-resolution and high-resolution mass spectrometry and other lines of evidence. All presently available information suggests that this antioxidant is a highly aromatic, monosubstituted phenol having the molecular formula C19H14O2.  相似文献   

20.
The long-underestimated role of extracellular vesicles in cancer is now reconsidered worldwide by basic and clinical scientists, who recently highlighted novel and crucial activities of these moieties. Extracellular vesicles are now considered as king transporters of specific cargoes, including molecular components of parent cells, thus mediating a wide variety of cellular activities both in normal and neoplastic tissues. Here, we discuss the multifunctional activities and underlying mechanisms of extracellular vesicles in neuroblastoma, the most frequent common extra-cranial tumor in childhood. The ability of extracellular vesicles to cross-talk with different cells in the tumor microenvironment and to modulate an anti-tumor immune response, tumorigenesis, tumor growth, metastasis and drug resistance will be pinpointed in detail. The results obtained on the role of extracellular vesicles may represent a panel of suggestions potentially useful in practice, due to their involvement in the response to chemotherapy, and, moreover, their ability to predict resistance to standard therapies—all issues of clinical relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号