首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present work describes a new route for the preparation of Cu–Al–Ni alloy strips via spray atomization and deposition route. The route consists of atomizing liquid Cu–Al–Ni alloy with a jet of argon gas in a closed chamber, at a pressure of 1 MPa. The semi-solid Cu–Al–Ni droplets are subsequently collected on the steel substrate placed vertically below the liquid metal stream in the atomization chamber to form a three-dimensional preform. The deposit produced on the substrate contains ~?5% porosity. The microstructural details of the spray deposited Cu–Al–Ni strips explains particularly the presence of porosity, formation of splats during the flight of spray casting and the associated microstructural evolution in Cu–Al–Ni spray deposit are explained.  相似文献   

2.

Microstructural response and variations in strength and electrical conductivity of a Cu−20 at. pct Ni–6.7 at. pct Al alloy during isothermal aging at temperatures from 723 K to 1023 K (450 °C to 750 °C) were investigated to discuss the age-induced precipitation behavior and strengthening mechanism. At all aging temperatures, fine spherical γ′-Ni3Al particles were found to nucleate coherently with parent Cu grains by continuous precipitation and then grew gradually by Ostwald ripening. Domains with a high density of twins developed at grain boundaries during aging below 873 K (600 °C) followed by cellular components composed of fiber-shaped γ′-Ni3Al and Cu solid solution phases at the domain boundaries later. Both the domains and cellular components were suppressed at aging above 923 K (650 °C). The age-induced strengthening principally resulted from fine dispersion of γ′-Ni3Al coherent particles in the grains. The precipitation strengthening by the fine γ′-Ni3Al coherent particles exhibited a maximum at an aging temperature of 873 K (600 °C), resulting in excellent mechanical properties such as a high hardness of 340 ± 7 HV and an ultimate tensile strength of 980 ± 14 MPa, which are comparable to those of other commercial age-hardened Cu–Be, Cu–Ni–Si, and Cu–Ti alloys.

  相似文献   

3.
4.
The effect of barothermal treatment by hot isostatic pressing (HIP) on the structure and the properties of castings of a promising high-strength cast aluminum alloy, namely, nikalin ATs6N4 based on the Al?Zn–Mg–Cu–Ni system, has been studied using two barothermal treatment regimes different in isothermal holding temperature. It is shown that the casting porosity substantially decreases after barothermal treatment; eutectic phase Al3Ni particles are additionally refined during exposure to the barothermal treatment temperature: the higher the HIP temperature, the more substantial the refinement. The improvement of the casting structure after HIP increases their mechanical properties. It is found, in particular, that the plasticity of the alloy in the state of the maximum hardening increases by a factor of more than 8 as compared to the initial state (from 0.82 to 6.9%).  相似文献   

5.
The present study investigates the effect of compaction pressure and sintering temperature on densification response and mechanical properties of the Al–3.8Cu–1Mg–0.8Si–0.3Sn (2712) alloy. The compacts were pressed at 200 and 400 MPa and sintered at temperatures ranging from 570–630°C in vacuum (10?6 Torr). The objective of the present work is to obtain an optimum sintering conditions for achieving higher sintered densities and mechanical properties. The effect of sintering temperature is evaluated by measuring the sintered density, densification parameter, microstructure, phase changes and mechanical properties. While a higher sintering temperature results in densification enhancement, it also leads to microstructural coarsening. Significant improvement in mechanical properties is obtained through age-hardening of sintered alloy under various ageing conditions (T4, T6 and T8).  相似文献   

6.
Al–12Si–3Cu–1 Mg–1.78Ni alloy is widely used for piston parts in automobile industry. The present paper investigates the effect of aging time for 1–16 h at 180 °C after solution treatment of the alloy at 500 °C for 5 h, on alloys prepared by gravity casting and squeeze casting. The wear rate of the alloy shows a minimum at an intermediate aging time. The hardness and ultimate tensile strength showed a peak at intermediate aging time. Mechanical properties and wear resistance are found to be better in squeeze cast alloy. The result are explained based on the microstructure developed during casting process and on heat treatment for various durations.  相似文献   

7.
none 《粉末冶金学》2013,56(4):209-215
Abstract

The possibilities of the production of aluminium-base copper and/or silicon alloys by conventional powder compaction and sintering methods have been studied. The effects of various lubricants, pressing, and sintering conditions on the behaviour of Al–Cu and Al–Cu–Si alloys were evaluated systematically. The role of copper and silicon additions during compaction and sintering and their advantages or disadvantages are discussed. All alloys underwent large dimensional changes (sudden swelling followed by rapid contraction) during sintering at temperatures greater than Al–Cu eutectic temperature and it is suggested that a process of particle rearrangement is largely responsible for this behaviour. The mechanical properties of the alloys were highly dependent on the sintering temperature. PM/0215  相似文献   

8.
Russian Journal of Non-Ferrous Metals - The 7075 aluminum alloy was subjected to deep cryogenic treatment (DCT) at –196°C with liquid nitrogen for different hours. The wear and corrosion...  相似文献   

9.
Russian Journal of Non-Ferrous Metals - In this paper, using the AA 511 alloy of the Al–Mg–Si system as an example, it is shown that the irradiation of aluminum melts with nanosecond...  相似文献   

10.
In this study, an attempt has been made to produce Al–10Cu–Fe alloy by vertical centrifugal casting at speeds ranging from 800 to 2850 rpm. The microstructural features, mechanical and wear properties have been investigated. The microstructure of Al–10Cu–Fe alloy consists of equiaxed grain morphology of the primary α-phase with eutectic phases in the interdendritic regions. It has been observed that there is a variation in the grain size from the inner surface of the casting to its outer surface. The speed also has a strong influence on the grain size and subsequent mechanical properties of the alloy. The wear properties of the alloy have been evaluated at a constant sliding velocity of 1 m/s for a range of applied load and sliding distance. The variations in the wear behavior are attributed to the size and solidification morphology of the castings.  相似文献   

11.
In the present work, the effects of pressure on the wear resistance characteristics, mechanical properties and the microstructures of Al–Si piston alloys that have variable Magnesium (Mg) content are studied. The paper begins with an explanation of the desirable properties of eutectic Al–Si alloys and why these chemical and mechanical properties are desirable in the fabrication of light weight machine components. The methods for further strengthening the alloys using alloying elements such as Ni, Cu and Mg, and applying heat treatment are also discussed. The paper also emphasises on the addition of Magnesium, and compares the traditional gravity die casting with a novel hybrid technology known as squeeze casting. In the results and discussion section, the microstructure properties of the Al–Si both as-cast and after heat treatment conditions are discussed. The mechanical and wear properties as well as the implications of pressure on the alloys are also discussed in details. SEM analyses of wear surface and fracture behavior on the as cast Al–Si alloys and after heat treatment, reveal that squeeze pressure increases fracture ductility as well as resistance to wear; more so upon heat treatment. It is also determined that the hardness and UTS values increases with increase in Magnesium content and reaches the maximum values when Mg content is at 1 % of the alloy’s composition.  相似文献   

12.
13.
14.
This research primarily focuses on improving the strength of Al 5083 alloy by both the ECAP and Cryo ECAP methodology. Equal Channel Angular Pressing (ECAP) is one of the best technologies that enable the direct transformation of conventional macro grained metals into sub-micron, ultra-fine and nano grained materials. Fine grain size increases the strength and the fracture toughness of the material and provides the potential for super plastic deformation at moderate temperatures and at high strain rates. The microstructure evolution in Al 5083, subjected to Room Temperature ECAP and Cryo ECAP were analysed. ECAP was carried out using an optimized die with Channel angle ‘?’ = 90°and corner angle ‘Ψ’ = 20° through processing route A and C up to four passes. The results were thoroughly studied using TEM, SEM, and optical microscopic images. Initially the annealed sample had the grain size of 80 µm with the equi-axed grains. In Room Temperature, the hardness values and the mechanical strength were found to be increased from 88 to 410 HV and 306 to 453 MPa after four passes in route A and in route C the strength increased from 390 to 416 MPa after four ECAP passes. Moreover, in Cryo Condition, the sample was processed up to four ECAP passes at route A and route C. The hardness of 153 HV was obtained after four passes in route C and 164 HV obtained after four passes on route A. Additionally, fracture behaviour using SEM, grain size using TEM and crystallite size by X-ray diffraction studies were analyzed. It was observed that the Cryo ECAP showed marginal improvements in mechanical properties relative to the RT ECAP in case of Al 5083.  相似文献   

15.
16.
Metallurgical and Materials Transactions A - Aluminum AA6005 sheet produced by Thin Strip (TS) casting was compared to the slabs produced by Direct Chill casting in the as-cast state. Higher...  相似文献   

17.
Ding  Zongye  Hu  Qiaodan  Yang  Fan  Lu  Wenquan  Yang  Tianxing  Cao  Sheng  Li  Jianguo 《Metallurgical and Materials Transactions A》2020,51(6):2689-2696
Metallurgical and Materials Transactions A - The growth mechanisms of single- and variant-flake Al3Ni phases at the liquid Al/solid Ni interface during solidification were investigated by...  相似文献   

18.
19.
This study has been directed towards developing 7xxx aluminum alloy for rheo-extrusion. Rheo extrusion was done by a co-rotating twin-screw extruder as a new semi-solid process for production of 7xxx aluminum alloys with high integrity. A super high-strength aluminum alloy was thermodynamically developed with nominal composition of Al–14Zn–9Mg–5.2Cu. The rheo-formability of alloy had been assessed by thermodynamic criteria and mechanical properties. The newly developed alloy showed good rheo-formability in terms of low temperature sensitivity of solid phase and reasonable mechanical properties. The results showed that optimized mechanical properties and microstructure was obtained at 0.6 solid fraction and 450 rpm for screws. The average grain size changed from 300 by conventional casting to 16 µm by rheo-extrusion process, also shape factor changed from 0.3 to 0.9. The mechanical properties of the rheo-extruded samples at these conditions were: UTS of 682, 621 MPa 0.2 % proof stress and 10 % elongation. Furthermore grain coalescence and columnar growth of solid/liquid interface were the main mechanisms that could deteriorate the rheo-formability. Also results showed that increasing of rotation speed could refine grain size and eliminate the grain coalescence but could not overcome instability of interface.  相似文献   

20.
《粉末冶金学》2013,56(5):620-627
Abstract

Cu–Al–Ni shape memory alloy strips were successfully prepared by a powder metallurgy route consisting of preparing powder preforms from premixed Cu, Al and Ni powders by cold compaction, stepwise sintering in the range 873–1273 K, followed by unsheathed multipass hot rolling at 1273 K in protective atmosphere. The densification behaviour of the sintered powder preforms during hot rolling has been discussed. Homogenisation of the hot rolled strips was carried out at 1173 K for 4 h. It has been shown that the finished Cu–Al–Ni alloy strip consisted of self-accommodated plates ofβ' and γ' martensites together with a small amount of nanocrystalline Cu9Al4 phase. The finished hot rolled Cu–Al–Ni strips had fracture strength of 476 MPa, coupled with 2·5% elongation. The shape memory tests showed almost 100% recovery after 10 thermomechanical cycles in the hot rolled strips at 1 and 2% applied prestrain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号