首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Presently, certain isomeric compounds of NTO and their tautomers have been investigated by performing density functional theory (DFT) calculations at B3LYP/6-31G(d,p) and ROB3P86/6-311G(d,p) levels and also ab initio calculations at RHF/6-311G(d,p) level. The optimized geometries, vibrational frequencies, electronic structures and some thermodynamical values for the presently considered NTO isomers have been obtained in their ground states. Also, detonation performances were evaluated by the Kammlet-Jacobs equations, based on the calculated densities and heat of formation values. The homolytic bond dissociation energies (BDEs) (at ROB3P86/6-311G(d,p) level) of NNO(2) and CNO(2) for the molecules were calculated. Moreover, aromatic character of NTO and its isomers and tautomers were investigated by performing NICS calculations using the gauge invariant atomic orbital (GIAO) approach at the B3LYP/6-31G(d,p) and B3LYP/cc-pVDZ levels.  相似文献   

2.
By calculating the bond energies for various metals, it has been shown that high bond energies herald low magnitudes of self-adhesion in metals. Also, metal-metal bond energies are directly related to the coefficients of friction, hardness and abrasive wear resistance of metals.  相似文献   

3.
Isolated nitrosoguanidine tautomers have been subjected to 6-31G(d,p), 6-31G(d,p) /(MP2), B3LYP/6-311G(d,p) and B3LYP/6-311++G(d,p) type quantum chemical analyses in the gas phase. The geometrical features and energetics of some conformers of the tautomers are reported. The nitrosimine form has the highest stability than the others and the diazoic acid form is the least stable one. The nitrosoimine form has the highest HOMO and LUMO energies. Whereas, the nitrosamine form possesses the lowest HOMO and the diazoic acid form has the lowest LUMO energies.  相似文献   

4.
Ham BM  Cole RB 《Analytical chemistry》2005,77(13):4148-4159
A new approach for calculating bond dissociation energies (BDEs) from ES-MS/MS measurements has been developed. The new method features a "derived effective reaction path length" that has been applied to measure BDEs of alkali metal (Li+) adducts and halide (Cl-) adducts of monoacylglycerol, 1,2-diacylglycerol, and 1,3-diacylglycerol lipids. Also studied were lithium-bound dimers of monoacylglycerols, 1,2-diacylglycerols, and 1,3-diacylglycerols. BDEs for the adducts and dimers of the lipids were derived from collision-induced dissociation experiments using a triple quadrupole mass spectrometer with electrospray as the ionization source. Mass spectral data were used to empirically derive a single-exponential growth equation that relates product cross section to collision energy. From these single-exponential equations, a general second-order polynomial was derived using a multivariate growth curve model that enables prediction of BDEs of unknown complexes. Mass spectral results were compared to computer-generated bond dissociation energies using Becke-style three-parameter density functional theory (B3LYP, employing the Lee-Yang-Parr correlation functional), with excellent agreement between experimental and theoretical energy values. The newly developed method is general in nature and can be used for the measurement of metal or halide ionic adduct bond dissociation energies and for the measurement of bond energies of noncovalent interactions such as dimer dissociation energies. The validity of the method has been rigorously established using a triple quadrupole, but it may also be applied to other mass spectrometers that allow user control of the collision cell potential.  相似文献   

5.
In the present work, the structural and electronic properties of vomitoxin (deoxynivalenol, a mycotoxin) and all of its possible tautomers have been investigated by the application of B3LYP/6-31G(d,p) type quantum chemical calculations. According to the results of the calculations, tautomer V(4) has been found to be the most stable one among all the structures both in the gas and aqueous phases. The calculations also indicated that, vomitoxin and V(2) possess the deepest and the highest lying HOMO levels, respectively. Hence, V(2) is to be more susceptible to oxidations than the others. On the other hand, V(5)(S) and vomitoxin have the lowest and the next lowest LUMO energies, respectively. Whereas, V(1) and V(2) possess quite highly lying (within the group) LUMO energy levels which result in comparatively unfavorable reduction potentials. Some important geometrical and physicochemical properties and the calculated IR spectra of the systems have also been reported in the study.  相似文献   

6.
An interpoly-stacked dielectric film with a SiO2/Si3N4/SiO2/Si (ONO) structure was prepared via the atomic-layer deposition method. The multilayer structure of the ONO film with triple interfaces was investigated via medium-energy ion scattering (MEIS). A few defects in the interface layer of the ONO structure were detected. From the X-ray photoelectron spectroscopy (XPS) results, it was presumed that the interface layer with defects in the MEIS result is due to the formation of an oxynitride layer on the unstable and rougher Si3N4 layer via. By measuring the I-V characteristics, the leakage current density and breakdown field of the ONO film were determined to be 3.4 x 10(-9) A/cm2 and 10.86 MV/cm, respectively. By estimation the C-V curve, the flat band (V(FB)) of the ONO film shifted to a negative voltage (-1.14 V), the dielectric constant (K(ONO)) of the ONO film was 5.79, and the effective interface-trapped charge density of the ONO film was about 4.96 x 10(11)/cm2.  相似文献   

7.
Ab initio molecular orbital calculations have been carried out on 2,4,6,8-tetranitro-1,3,5,7-tetraazacyclooctatetraene, the tetramer of the series (NO(2)CN)(n) where n=1-4, using the Hartree-Fock theory with the 6-31 G(d) basis set. These calculations yield three conformers for the tetramer with D(4h), C(4h) and C(2) symmetries. The nonplanar conformer with the C(2) symmetry turns out to be 99.0 and 164.4kJmol(-1), respectively, lower in energy than the C(4h) and D(4h) conformers. The electron density topography - the density at the bond critical point - has been used as a measure of the CNO(2) strengths. Based on these bond strengths, heats of formation [obtained from the parametric model 3 (PM3) method] and specific decomposition energies, it may be concluded that (NO(2)CN)(4) is a promising candidate in the class of high energy molecules. Theoretically computed explosive (velocity of detonation, detonation pressure, etc.) and ballistic (characteristic velocity, specific impulse, etc.) parameters support these conclusions.  相似文献   

8.
《Thin solid films》2005,471(1-2):166-169
Thermally stimulated exoelectron emission has been applied for high-resolution depth profiling of traps in amorphous SiO2/Si3N4/SiO2 (ONO) dielectric stacks used in silicon–oxide–nitride–oxide–silicon (SONOS) memory devices. It is shown that maximum density of traps responsible for charge storage in ONO structures is at the interface between top silicon oxide and silicon nitride in ONO.  相似文献   

9.
Nivalenol, a highly poisonous mycotoxin, and its possible tautomers have been considered theoretically by RHF/6-31G/d,p) and B3LYP/6-31G(d,p) calculations together with a semi-empirical PM3 method. The calculations revealed that some of the tautomers are more stable and exothermic than nivalenol. The calculated IR spectra as well as some geometrical and physicochemical properties of the structures considered have been presented.  相似文献   

10.
The surface energies and work functions of Mg, Ca, and MgCa surfaces are derived by means of first principles calculation, and it is found that the Ca-terminated B2 MgCa surfaces have much lower surface energies than corresponding Mg-terminated surfaces. Moreover, calculations reveal that the adsorption energy of Cl atom on Ca (111) surface is much lower than that on Mg (0001) surface due to a stronger CaCl bond than MgCl, and that for MgCa (110) surface, various possible adsorption of Cl atoms are investigated and the most energetically preferred site is found. In addition, the magnitude of adsorption energies suggest that the corrosion resistance of MgCa (110) surface against Cl atom would be located between those of Mg (0001) and Ca (111) surfaces. The relative stability of various adsorption sites is discussed by means of electronic structures, and the present calculated results are in good agreement with experimental results in the literature.  相似文献   

11.
Many materials of practical interest are either semiconducting or insulating in nature. One of the most important quantities characterising these materials, therefore, is the energy bandgap. In the present article, procedures available for estimating the bandgaps of binary, inorganic materials from thermochemical and related data have been briefly reviewed with special emphasis on recent work.It has been shown that heats of formation per equivalent and heats of atomisation per equivalent may be used for approximate prediction of bandgaps of these materials. Theoretical origins of the correlation of bandgaps to heats of formation, heats of atomisation, lattice energies, single bond energies and average bond energies etc., have been indicated.  相似文献   

12.
In this study, quantum chemical calculations of vibrational spectra, Raman spectra, electronic properties (total energy, dipole moment, electronegativity, chemical hardness and softness), Mulliken atomic charges and thermodynamic parameters of bis-thiourea zinc acetate (BTZA) have been performed using Gaussian 09 program. Additionally, nonlinear optical (NLO), conformational, natural bond orbital (NBO) analyses of BTZA have been carried out using the same program. The structural and spectroscopic data of the molecule in the ground state have been calculated using Hartree-Fock (HF) and density functional method (DFT/B3LYP) with the 6-311++G(d,p) basis set. In addition, the molecular frontier orbital energies (HOMO, HOMO-1, LUMO and LUMO+1) of the title compound have been calculated at the HF and B3LYP levels. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Finally, the calculated results were applied to simulate infrared and Raman spectra of the title compound which showed good agreement with the experimental ones.  相似文献   

13.
First-principles calculations based on density function theory within the generalized gradient approximation (GGA) have been carried out to investigate the effects of O doping on the structural, magnetic and electronic properties of BiF3. Based on the calculated cohesive energies, O impurities prefer substituting F atom at tetrahedral sites (0.25, 0.25, 0.25). And the geometry of BiF3 changes little due to similar radius of O and F atoms. By analyzing density of states (DOS) of Bi4OF11 (II), it has been found that Bi4OF11 (II) presents magnetic character and half-metallic state, implying its potential applications in Li-ion batteries. Finally, the character of bond in Bi4OF11 (II) was discussed by analysis of charge density and bader charge. The result shows that O doping weakens ionic bond in BiF3.  相似文献   

14.
Chemisorption properties of atomic hydrogen on the Ga-rich GaAs(1 0 0), (2×1) and β(4×2) surfaces are investigated using ab initio self-consistent restricted open shell Hartree–Fock (ROHF) total energy calculations with Hay–Wadt (HW) effective core potentials. The effects of electron correlation have been included using many-body perturbation theory through second order with the exception of β(4×2) symmetry due to computational limitations. The semiconductor surface is modeled by finite sized hydrogen saturated clusters. The effects of surface reconstruction have been investigated in detail. We report on the energetics of chemisorption on the (1 0 0) surface layer, including adsorption beneath the surface layer at an interstitial site, and also report on the possible dimer bond breaking at the bridge site. Chemisorption energies, bond lengths, and charge population analysis are reported for all considered sites of chemisorption.  相似文献   

15.
The high-pressure carbon monoxide (HiPco) process for producing single-wall carbon nanotubes (SWNTs) uses iron pentacarbonyl as the source of iron for catalyzing the Boudouard reaction. Attempts using nickel tetracarbonyl led to no production of SWNTs. This paper discusses simulations at a constant condition of 1300 K and 30 atm in which the chemical rate equations are solved for different reaction schemes. A lumped cluster model is developed to limit the number of species in the models, yet it includes fairly large clusters. Reaction rate coefficients in these schemes are based on bond energies of iron and nickel species and on estimates of chemical rates for formation of SWNTs. SWNT growth is measured by the conformation of CO2. It is shown that the production of CO2 is significantly greater for FeCO because of its lower bond energy as compared with that of NiCO. It is also shown that the dissociation and evaporation rates of atoms from small metal clusters have a significant effect on CO2 production. A high rate of evaporation leads to a smaller number of metal clusters available to catalyze the Boudouard reaction. This suggests that if CO reacts with metal clusters and removes atoms from them by forming MeCO, this has the effect of enhancing the evaporation rate and reducing SWNT production. The study also investigates some other reactions in the model that have a less dramatic influence.  相似文献   

16.
Belyakov  V. A. 《Measurement Techniques》2001,44(12):1246-1250
A universal model is proposed for describing elementary-particle interactions. Although it was originally intended for very high interaction energies, at the qualitative level, its predictions are close to experiment at low energies. Extensive checks have been made on the predictions from the quark-gluon string model on the basis of measurements from p + C interaction at a momentum of 4.2 GeV/sec. The characteristics of protons and of positive and negative pions are compared on the basis of the particle multiplicities, the momentum and angular distributions, the rapidities, and the effective masses. The comparison performance is evaluated from two quantitative criteria.  相似文献   

17.
This work presents a method to enhance the performance of polycrystalline silicon thin film transistors (poly-Si TFTs) by using an oxide-nitride-oxide (ONO) gate dielectric and the multiple nanowire channels structure. Experimental results indicate that the performance of the device was enhanced by using the ONO multilayer, because the ONO gate dielectric constant is increased compared to the conventional oxide gate dielectric. Additionally, the TFTs with a ten nanowire channel structure (NW-TFTs) have superior electrical characteristics compared to other TFTs. This is because a structure with more corners and a shorter radius has better gate control due to the corner effect.  相似文献   

18.
Phase stability and chemical bonding of beta-NaBH4 and beta-KBH4 derived nano-structures and possible low energy surfaces of them from thin film geometry have been investigated using ab initio projected augmented plane wave method. Structural optimizations based on total energy calculations predicted that, for beta-NaBH4 and beta-KBH4 phases, the (011) and (101) surfaces are more stable among the possible low energy surfaces. The predicted critical size of the nano-cluster for beta-NaBH4 and beta-KBH4 is 1.35 and 1.8 nm, respectively. The corresponding critical diameter for the nano-whisker is 2.6 and 2.8 nm respectively for beta-NaBH4 and beta-KBH4. Structural optimization based on total energy calculations show that the bond distances in the surfaces of nano-whisker are found to be higher than that in the bulk material and the calculated H site energies and bond overlap population analysis suggesting that it is considerably easier to remove hydrogen from the surface of the clusters and nano-whiskers than that from the bulk crystals.  相似文献   

19.
The electrical characteristics of SiC nanocrystal nonvolatile-memory devices with variable oxide and crested tunnel barriers consisting of a SiO2/Si3N4/SiO2 (ONO) and a Si3N4/SiO2/Si3N4 (NON) layer, respectively, were investigated. The equivalent oxide thickness of the ONO and NON tunnel barriers were about 5.6 nm and 5.2 nm, respectively. When the +/- 13 V bias voltage was applied for 500 ms, the threshold voltage shifts of the SiC-nanocrystal-embedded memory devices with ONO and NON tunnel barriers were about 2.4 V. The operation speeds of the memories with ONO and NON tunnel barriers under the +/- 10 V applied pulse bias were approximately 5 and 20 ms, respectively. The field sensitivity of the ONO tunnel barrier was higher than that of the NON tunnel barrier during electron injection. The tunneling efficiency during the programming/erasing processes could be improved by the engineered tunnel barrier layer. Therefore, the SiC-nanocrystal-embedded memory device with an ONO tunnel barrier can be applied to nonvolatile-memory devices.  相似文献   

20.
Abstract

Surface preparation techniques of aluminium for adhesive joining in aerospace applications and their influence on bond formation have been reviewed. The mechanisms of the different pretreatments have been discussed with attention to the effect of alloying elements and conditions of the technique. On the basis of the morphology and physical and chemical state of the metal surface it has been attempted to characterize the adhesive-metal bond, its strength, and stability under adverse conditions.

MST/546  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号