首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
Paxillin, a focal adhesion protein, exists as multiple isoforms in humans (alpha, beta, and gamma). To understand more about the physiological role of each isoform, we have employed the mouse system. We found that although the alpha and beta isoforms are present in the mouse, the gamma isoform is not. The alpha isoform protein was detected clearly in most adult tissues, whereas the beta isoform protein was almost undetectable except in spleen, testis, thymus, and lung. On the other hand, mRNAs of both isoforms were detectable in all tissues we examined. High levels of the beta isoform protein was detected in peritoneal exudate macrophage cells in adult mouse as well as in cultured fibroblasts, together with the alpha isoform. The alpha isoform was expressed at a constant level throughout the embryonic stages we examined, whereas the beta isoform protein was detected at the mid-stages of development and increased to levels almost equal to those of the alpha isoform during the late stages of embryogenesis. Therefore, unlike the alpha isoform, expression of the beta isoform protein is restricted in adult tissues. Moreover, we showed that alpha and beta isoforms were colocalized within the same focal adhesion plaques, and cytoplasmic pools of both isoforms exist in the perinuclear area, colocalized with the Golgi apparatus.  相似文献   

3.
4.
5.
All retinoic acid receptors (RAR alpha, beta, gamma) have two isoforms, whose function is unknown. We now show that at least for RAR gamma, the isoforms are differentially distributed in the embryo. RAR gamma 1 and RAR gamma 2 are detected in the head region, whereas RAR gamma 2 is the sole isoform expressed in the tail region. Specifically, it is expressed in the chordoneural hinge, a region of the tailbud that has organizing properties. Treatment with high doses of retinoic acid (RA) reduces expression in this region. The results are discussed in terms of the known teratogenic effects of RA in the tail region.  相似文献   

6.
The beta-thymosins are a family of small proteins originally isolated from the thymus. Recently, two of the major mammalian isoforms, thymosin beta 4 (T beta 4) and thymosin beta 10 (T beta 10), are identified as significant actin monomer sequestering proteins which may be involved in regulating actin filament assembly. To study the cellular function of beta-thymosins, we have used isoform-specific antibodies to determine their concentration and intracellular distribution, and examined the effects of inducing overexpression of T beta 4 and T beta 10 on actin filament structures. Immunofluorescence labeling of peritoneal macrophages showed that both beta-thymosins are uniformly distributed within the cytoplasm. cDNA-mediated overexpression of beta-thymosins in CV1 fibroblasts induced extensive loss of phalloidin-stained actin stress fibers. Stress fibers in the cell center were more susceptible than those at the periphery. There was a decrease in the number of focal adhesions, as evidenced by a decrease in discrete vinculin staining and an increase in diffuse vinculin fluorescence. The majority of the transfected cells had normal shape in spite of extensive loss of actin filaments. Occasionally, cells overexpressing beta-thymosin were observed to divide. In these cells, beta-thymosin was excluded from the midbody which contains an actin filament-rich contractile ring. Our results indicate that T beta 4 and T beta 10 are functionally very similar and both are effective regulators of a large subset of actin filaments in living cells.  相似文献   

7.
Growth cones at the growing tips of developing neurites contain the machinery to transmit information from receptors to a variety of intracellular enzymes and ion channels. In order to understand how signals are transmitted across the membrane, we asked whether the multiplicity of signalling pathways in the growth cone is reflected by the diversity of G proteins found in this organelle. Our immunohistochemical analysis indicated that growth cones of differentiated PC12 cells contain at least 4 alpha G protein subunits, 3 that are pertussis toxin substrates (alpha o, alpha i-1, alpha i-2) and 1 that is not (alpha q). In addition to localization in the neurites and growth cones, alpha o, alpha i-1, alpha i-2, and alpha q were detected in intracellular perinuclear structures. We also analyzed the temporal change in G proteins in PC12 cells differentiated by treatment with nerve growth factor (NGF). Time course experiments have shown that alpha o and beta proteins coordinately increase after 2 days of treatment with NGF, reach a maximum at 4 days, and remain elevated. In contrast to alpha o, alpha i-2 reached a peak at 4 days, then declined to almost the basal level by day 7 of treatment with NGF. These data indicated that the levels of alpha o, alpha i-2, and beta are differentially regulated during NGF-induced neuronal differentiation in PC12 cells. The alpha o protein was highly concentrated at the tips of the growth cones before the cellular level of alpha o had increased appreciably, suggesting that the alpha subunits are translocated during the first stage of neurite development. In addition, not every neural process has the same high level of alpha o, suggesting that G proteins may help define the specialized functions of particular neurites within a single cell.  相似文献   

8.
Phosphatidylcholine (PtdCho) can provide lipid second messengers involved in signal transduction pathways. As a measure of phospholipid turnover in response to extracellular stimulation, we investigated differential enhancement of [3H]choline incorporation into PtdCho by phorbol esters. In C6 rat glioma and SK-N-SH human neuroblastoma cells, [3H]PtdCho synthesis was 2-4 fold stimulated by beta-12-O-tetradecanoylphorbol-13-acetate (beta-TPA) when [3H]choline was incubated simultaneously with, or 15 min prior to, beta-TPA treatment. By contrast, in N1E-115 mouse and SK-N-MC human neuroblastoma cells, phorbol esters had no appreciable effect on [3H]choline incorporation; however, in all cells, 200 microM oleic acid enhanced PtdCho synthesis, indicating a stimulable process. Alterations by thymeleatoxin (TMT), an activator of conventional PKC isoforms (alpha, beta and gamma), were similar to beta-TPA. We investigated whether expression of specific PKC isoforms might correlate with these effects of phorbol esters on PtdCho synthesis. All cell lines bound phorbol esters, had PKC activity that was translocated by phorbol esters and differentially expressed isoforms of PKC. Northern and western blot analyses, using specific cDNA and antibodies for PKC-alpha, -beta, -gamma, -delta, -epsilon, and -zeta, revealed that expression of alpha-isoform predominated in C6 and SK-N-SH cells. In contrast, TPA-responsive beta-isoform predominated in SK-N-MC cells. gamma-PKC was not detected in any cells and only in C6 cells was PKC-delta present and translocated by beta-TPA treatment. PKC-epsilon was not detected in SK-N-MC cell lines but translocated with TPA treatment in the other three cell lines. PKC-zeta was present in all cells but was unaltered by TPA treatment. Accordingly, stimulation of PtdCho turnover by phorbol esters correlated only with expression of PKC-alpha; presence of PKC-beta alone was insufficient for a TPA response.  相似文献   

9.
Nerve growth factor (NGF) produces both rapid and delayed cellular responses that are involved in neuronal differentiation. Neurite formation, a conspicuous delayed response, is accompanied by phosphorylation of beta-tubulin in PC12 cells. The present work provides further characterization of the phospho form of beta-tubulin in this neuronal model system with regard to isotype, cellular localization, and the circumstances that favor its formation. The results indicate that neuron-specific type III beta-tubulin (beta III-tubulin) is selectively affected during neurite formation. This phosphorylation occurs relatively late in the NGF signal transduction cascade and increases progressively with increasing duration of NGF treatment concomitant with more extensive neurite growth. The subcellular distribution of beta III-tubulin is not markedly different from that of total tubulin, but the phosphorylated protein is uniquely associated with microtubules that are calcium and cold labile. Although NGF is capable of inducing phosphorylation of beta III-tubulin, it is not necessarily sufficient. Based on experiments that employ either nonpermissive substrate conditions or microtubule-depolymerizing drugs, this phosphorylation requires neurite outgrowth. Direct measurements of the phospho form in neurites versus cell bodies by means of a microculture system indicate that phosphorylated beta III-tubulin is enriched in neurites. The enrichment of phospho-beta III-tubulin in calcium- and cold-labile polymer within neurites and its near absence in nonneurite bearing, NGF-treated cells suggests a role for this posttranslationally modified protein in the regulation of dynamic microtubules involved in neurite formation.  相似文献   

10.
11.
The AMP-activated protein kinase (AMPK) is a heterotrimeric complex composed of a catalytic subunit (alpha) and two regulatory subunits (beta and gamma). Two isoforms of the catalytic subunit (alpha1 and alpha2) have been identified. We show here that the alpha1- and alpha2-containing complexes contribute approximately equally to total AMPK activity in rat liver. Furthermore, expression of alpha1 or alpha2 with beta and gamma in mammalian cells demonstrates that both complexes have equal specific activity measured with the SAMS peptide. Using variant peptides, however, we show that alpha1 and alpha2 exhibit slightly different substrate preferences, which suggest that the two isoforms could play different physiological roles within the cell.  相似文献   

12.
13.
The gamma subunits of trimeric G-proteins (gamma1, gamma2, gamma5, and gamma7 isoforms) were found to be methylated at their carboxyl termini in normal rat islets, human islets and pure beta [HIT-T15] cells. Of these, GTPgammaS significantly stimulated the carboxyl methylation selectively of gamma2 and gamma5 isoforms. Exposure of intact HIT cells to either of two receptor-independent agonists--a stimulatory concentration of glucose or a depolarizing concentration of K+--resulted in a rapid (within 30 s) and sustained (at least up to 60 min) stimulation of gamma subunit carboxyl methylation. Mastoparan, which directly activates G-proteins (and insulin secretion from beta cells), also stimulated the carboxyl methylation of gamma subunits in intact HIT cells. Stimulatory effects of glucose or K+ were not demonstrable after removal of extracellular Ca2+ or depletion of intracellular GTP, implying regulatory roles for calcium fluxes and GTP; however, the methyl transferase itself was not directly activated by either. The stimulatory effects of mastoparan were resistant to removal of extracellular Ca2+, implying a mechanism of action that is different from glucose or K+ but also suggesting that dissociation of the alphabetagamma trimer is conducive to gamma subunit carboxyl methylation. Indeed, pertussis toxin also markedly attenuated the stimulatory effects of glucose, K+ or mastoparan without altering the rise in intracellular calcium induced by glucose or K+. Glucose-induced carboxyl methylation of gamma2 and gamma5 isoforms was vitiated by coprovision of any of three structurally different cyclooxygenase inhibitors. Conversely, exogenous PGE2, which activates Gi and Go in HIT cells and which thereby would dissociate alpha from beta(gamma), stimulated the carboxyl methylation of gamma2 and gamma5 isoforms and reversed the inhibition of glucose-stimulated carboxyl methylation of gamma subunits elicited by cyclooxygenase inhibitors. These data indicate that gamma subunits of trimeric G-proteins undergo a glucose- and calcium-regulated methylation-demethylation cycle in insulin-secreting cells, findings that may imply an important role in beta cell function. Furthermore, this is the first example of the regulation of the posttranslational modification of G-protein gamma subunits via nonreceptor-mediated activation mechanisms, which are apparently dependent on calcium influx and the consequent activation of phospholipases releasing arachidonic acid.  相似文献   

14.
15.
This study was performed to examine effects of the overexpression of protein kinase C (PKC) isoforms (i.e., beta I, beta II, gamma, delta, eta, and zeta) on mitogen-activated protein (MAP) kinase (Erk-1 and -2) signaling and growth characteristics of NIH3T3 cells. Phorbol ester (PMA) activated endogenous and ectopically expressed PKC alpha, beta I, beta II, gamma, delta, epsilon, and eta. Overexpression of the examined PKC isoforms enhanced PMA-induced MAP kinase activation. Potentiation of MAP kinase activation was also observed upon stimulation of cells with platelet-derived growth factor (PDGF) although there was no indication for the activation PKC isoforms by PDGF. Inhibition of PKC blocked PMA- but not PDGF-induced MAP kinase activation. Thus, potentiation of PDGF-induced MAP kinase activation appears to be independent to PKC activity, while PMA-induced MAP kinase activation requires PKC activity. The ability of PKC isoforms to potentiate MAP kinase activation is not related to the growth characteristics of cells because individual PKC isoforms differentially regulated maximum density and proliferation of cells.  相似文献   

16.
Type I phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinases (PIP5K) catalyze the synthesis of phosphatidylinositol 4, 5-bisphosphate, an essential lipid molecule in various cellular processes. Here, we report the cloning of the third member (PIP5Kgamma) and the characterization of members of the type I PIP5K family. Type I PIP5Kgamma has two alternative splicing forms, migrating at 87 and 90 kDa on SDS-polyacrylamide gel electrophoresis. The amino acid sequence of the central portion of this isoform shows approximately 80% identity with those of the alpha and beta isoforms. Northern blot analysis revealed that the gamma isoform is highly expressed in the brain, lung, and kidneys. Among three isoforms, the beta isoform has the greatest Vmax value for the PtdIns(4)P kinase activity and the gamma isoform is most markedly stimulated by phosphatidic acid. By analyzing deletion mutants of the three isoforms, the minimal kinase core sequence of these isoforms were determined as an approximately 380-amino acid region. In addition, carboxyl-terminal regions of the beta and gamma isoforms were found to confer the greatest Vmax value and the highest phosphatidic acid sensitivity, respectively. It was also discovered that lysine 138 in the putative ATP binding motif of the alpha isoform is essential for the PtdIns(4)P kinase activity. As was the case with the alpha isoform reported previously (Shibasaki, Y., Ishihara, H., Kizuki, N., Asano, T., Oka, Y., Yazaki, Y. (1997) J. Biol. Chem. 272, 7578-7581), overexpression of either the beta or the gamma isoform induced an increase in short actin fibers and a decrease in actin stress fibers in COS7 cells. Surprisingly, a kinase-deficient substitution mutant also induced an abnormal actin polymerization, suggesting a role of PIP5Ks via structural interactions with other molecules.  相似文献   

17.
Neurons undergo complex morphological changes during differentiation and in cases of plasticity. A major determinant of cell morphology is the actin cytoskeleton, which in neurons is comprised of two actin isoforms, non-muscle gamma- and beta-actin. To better understand their respective roles during differentiation and plasticity, their cellular and subcellular localization was examined in developing and adult cerebellar cortex. It was observed that gamma-actin is expressed at a constant level throughout development, while the level of beta-actin expression rapidly decreases with age. At the light microscopic level, gamma-actin staining is ubiquitous and the only developmental change observed is a relative reduction of its concentration in cell bodies and white matter. In contrast, beta-actin staining almost completely disappears from the cytoplasm of cell bodies, primary dendrites and axons. In young cerebellar cultures, gamma-actin is found in the cell body, neurites and growth cones, while beta-actin is mainly found in growth cones, as previously reported in other primary neuronal culture systems [Kaech et al. (1997), J. Neuroscience, 17, 9565-9572; Bassell et al., (1998), J. Neuroscience, 18, 251-265]. Electron microscopy of post-embedding immunogold-labelled tissue confirms the widespread distribution of gamma-actin, and also reveals an increased concentration of gamma-actin in dendritic spines in the adult. During development, beta-actin accumulation is observed in actively growing structures, e.g., growth cones, filopodia, cell bodies and axonal tracts. In the adult cerebellar cortex, beta-actin is preferentially found in dendritic spines, structures which are known to retain their capacity for morphological modifications in the adult brain. This differential subcellular localization and developmental regulation of the two actin isoforms point to their different roles in neurons.  相似文献   

18.
Actin is a ubiquitous protein in eukaryotic cells and plays an important role in cell structure, cell motility, and the generation of contractile force in both muscle and nonmuscle cells. Multiple genes encoding muscle or nonmuscle actins have been isolated from several species of ascidians and their expression patterns have been investigated. Sequence and expression analyses of muscle actin genes have shown that ascidians have at least two distinct isoforms of muscle actin, the larval muscle and body-wall isoforms. In the ascidian Halocynthia roretzi, two clusters of actin genes are expressed in the larval muscle cells. The HrMA2/4 cluster contains at least five actin genes and the HrMA1 cluster contains a pair of actin genes whose expression is regulated by a single bidirectional promoter. cis-Regulatory elements essential for muscle-specific expression of a larval muscle actin gene HrMA4a have been identified. The adult body-wall muscle actin is clearly distinguished from the larval muscle actin by diagnostic amino acids. The adult muscle actin genes may be useful tools to investigate the mechanisms of muscle development in ascidian adults. The evolution of chordate actin genes has been inferred by comparing the organization and sequences of actin genes and performing molecular phylogenetic analysis. The results suggest a close relationship between ascidian and vertebrate actins. The chordate ancestor seems to have evolved the "chordate-type" cytoplasmic and muscle actins before its divergence into vertebrates and urochordates. The phylogenetic analysis also suggests that the vertebrate muscle actin isoforms evolved after the separation of the vertebrates and urochordates. Muscle actin genes have been used to investigate the mechanism of muscle cell regression during the evolution of anural development. The results suggest that the regression of muscle cell differentiation is mediated by changes in the structure of muscle actin genes rather than in the trans-acting regulatory factors required for their expression. Actin genes have provided a unique system to study developmental and evolutionary mechanisms in chordates.  相似文献   

19.
The role of the nuclear phosphoinositide (PI) cycle during meiotic resumption in mouse oocytes was examined. First, using indirect immunofluorescence staining with specific monoclonal antibodies (mAbs) against elements of this cycle, the presence of inositol trisphosphate receptors (IP3Rs) (IP3R-1 or IP3R-3) or phosphoinositide-phospholipase (PLC) isoforms (PLC beta 1 or PLC gamma 1) was monitored in the germinal vesicle (GV). Using confocal laser scanning microscopy, we analysed the effects of the nuclear microinjection of these antibodies on both spontaneous nuclear calcium oscillations and meiosis resumption. Immunostainings showed that IP3R-1 and PLC beta 1 isoforms were both present in the GV, whereas IP3R-3 and PLC gamma 1 isoforms were not. The anti-IP3R-1 mAbs or the anti-PLC beta 1 mAbs microinjected into the GV, induced inhibition of both the nuclear Ca2+ oscillations and the meiotic process, whereas the anti-IP3R-3 mAbs and the anti-PLC gamma 1 mAbs did not. We concluded that a specific nuclear PI cycle is present in the mouse oocyte and meiosis resumption requires a specific nuclear phosphoinositide-dependent Ca2+ signal.  相似文献   

20.
We have studied the effect of gamma radiation on differentiation in neuroblastoma cell lines AF8 and SJ-N-KP. Growth inhibition and morphological and biochemical differentiation have been examined following radiation exposure to 1-10 Gy. Gamma radiation induced marked growth inhibition and morphological differentiation in a dose-and time-dependent manner in both cell lines, and induced biochemical differentiation in AF8 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号