共查询到20条相似文献,搜索用时 15 毫秒
1.
Sunyoung Kim Hans-Heinrich Carstensen Anthony M. Dean Joongmyeon Bae 《International Journal of Hydrogen Energy》2012
Mixture preparation technology plays a critical role in ensuring reformate quality during autothermal reforming of liquid fuels. Incomplete mixing can cause temperature overshoots and deposit formation within the catalyst bed. However, the time available for mixing is limited by unwanted gas-phase reactions that produce deposit precursors. We perform an analysis of the gas-phase reactions in the mixing region using a well-tested alkane oxidation mechanism taken from the literature. One particularly interesting prediction is that the time for significant reaction to occur does not monotonically decrease as the temperature increases. This is due to the negative temperature coefficient (NTC) kinetics. By mixing within the NTC temperature window, it should be possible to provide substantially more time for mixing. Similarly, one can expand the mixing time by suitable choices of mixture composition. These results provide important guidance criteria for the optimization of a mixer design to avoid undesirable reactions. 相似文献
2.
To ensure the proper performance of a hydrocarbon reformer, the fuel and reforming agents should be mixed properly within a short time to suppress gas-phase ethylene production, a well-known deposit precursor that could lead downstream catalyst failure. To examine potential interactions between reactant mixing and gas-phase reaction kinetics in the mixing region, coupled computational fluid dynamics (CFD)-kinetics simulations are performed for autothermal reforming. n-heptane is selected as a representative hydrocarbon fuel. The simulations show clear Negative Temperature Coefficient (NTC) behavior within the temperature range of 450–625 °C. At temperatures below the NTC region, the gas-phase reactions are rapid and highly exothermic, making the impact of mixing substantial. Ethylene is produced via a partial oxidation mechanism and is enhanced when the local O/C ratio exceeds the global value. Above the NTC region, ethylene is primarily produced from slower pyrolysis reactions, and then efficient mixing slightly suppresses the ethylene yield. The results suggest the counterintuitive conclusion that mixing at higher temperatures actually suppresses the undesirable reactions. 相似文献
3.
《International Journal of Hydrogen Energy》2020,45(3):2279-2288
The autothermal reforming of diesel fuel is a catalytic process that runs at temperatures of 700 °C–900 °C. Long-chain hydrocarbon molecules react with steam and O2, yielding a product gas that mainly consists of CO, CO2, CH4 and H2. H2 is essential for the operation of fuel cell systems. The Forschungszentrum Jülich has been engaged in the cooperative development of technical apparatus for this reaction to be applied in fuel cell systems over the past 15 years, together with many other research groups worldwide, and this paper deals with reactor ATR 14, which is considered the preliminary end-product of Jülich's research and development in this field. This paper briefly summarizes Jülich's earlier reactor generations and then describes the most recent improvements embodied in the ATR 14. Additionally, the experimental evaluation of the ATR 14 is presented, which demonstrates that it can be operated over a broad load range and with almost complete carbon conversion. 相似文献
4.
Technology for the reforming of heavy hydrocarbons, such as diesel, to supply hydrogen for fuel cell applications is very attractive and challenging due to its delicate control requirements. The slow reforming kinetics of aromatics contained in diesel, sulfur poisoning, and severe carbon deposition make it difficult to obtain long-term performance with high reforming efficiency. In addition, diesel has a critical mixing problem due to its high boiling point, which results in a fluctuation of reforming efficiency. An ultrasonic injector (UI) have been devised for effective diesel delivery. The UI can atomize diesel into droplets (∼40 μm) by using a piezoelectric transducer and consumes much less power than a heating-type vapourizer. In addition, reforming efficiencies increase by as much as 20% compared with a non-UI reformer under the same operation conditions. Therefore, it appears that effective fuel delivery is linked to the reforming kinetics on the catalyst surface. A 100-We, self-sustaining, diesel autothermal reformer using the UI is designed. In addition, the deactivation process of the catalyst, by carbon deposition, is investigated in detail. 相似文献
5.
《International Journal of Hydrogen Energy》2022,47(7):4568-4583
Decline in catalyst performance due to coke deposition is the main problem in diesel steam (SR) and autothermal reforming (ATR) reactions. Good redox potential and strong interaction of CeO2 with nickel increase activity and coke resistivity of Ni/Al2O3 catalysts. In this study, mesoporous Al2O3, CeO2/Al2O3, and CeO2/ZrO2/Al2O3 supported nickel catalysts were successfully synthesized. The highest hydrogen yield, 97.7%, and almost no coke deposition were observed with CeO2/ZrO2/Al2O3 catalyst (Ni@8CeO2-2ZrO2-Al2O3-EISA) in SR reaction. The second highest hydrogen yield, 91.4%, was obtained with CeO2/Al2O3 catalyst (Ni@10CeO2-Al2O3-EISA) with 0.3 wt% coke deposition. Presence of ZrO2 prevented the transformation of cubic CeO2 into CeAlO3, which enhanced water gas shift reaction (WGSR) activity. Ni@10CeO2-Al2O3-EISA did not show any decline in activity in a long-term performance test. Higher CeO2 incorporation (20 wt%) caused lower steam reforming activity. Change of synthesis route from one-pot to impregnation for the CeO2 incorporation decreased the number of acid sites, limiting cracking reactions and causing a significant drop in hydrogen production. 相似文献
6.
Marius Maximini Philip Engelhardt Melanie Grote Martin Brenner 《International Journal of Hydrogen Energy》2012
This paper presents results from the ongoing optimisation of a microchannel steam reformer for diesel fuel which is developed in the framework of the development of a PEM fuel cell system for vehicular applications. Four downscaled reformers with different catalytic coatings of precious metal were operated in order to identify the most favourable catalyst formulation. Diesel surrogate was processed at varying temperatures and steam to carbon ratios (S/C). The reformer performance was investigated considering hydrogen yield, reformate composition, fuel conversion, and deactivation from carbon formation. Complete fuel conversion is obtained with several catalysts. One catalyst in particular is less susceptible to carbon formation and shows a high selectivity. 相似文献
7.
M. Grote M. MaximiniZ. Yang P. EngelhardtH. Köhne K. LuckaM. Brenner 《Journal of power sources》2011,196(21):9027-9035
The present work describes the optimisation of a compact steam reformer for light fuel oil and diesel fuel. The reformer is based upon a catalytically coated micro heat exchanger that thermally couples the reforming reaction with a catalytic combustion. Since the reforming process is sensitive to reaction temperatures and internal flow patterns, the reformer was modelled using a commercial CFD code in order to optimise its geometry. Fluid flow, heat transfer and chemical reactions were considered on both sides of the heat exchanger. The model was successfully validated with experimental data from reformer tests with 4 kW, 6 kW and 10 kW thermal inputs of light fuel oil. In further simulations the model was applied to investigate parallel flow, counter flow and cross flow conditions along with inlet geometry variations for the reformer. The experimental results show that the reformer design allows inlet temperatures below 773 K because of its internal superheating capability. The simulation results indicate that two parallel flow configurations provide fast superheating and high fuel conversion rates. The temperature increase inside the reactor is influenced by the inlet geometry on the combustion side. 相似文献
8.
Philip Engelhardt Marius Maximini Frank Beckmann Martin Brenner 《International Journal of Hydrogen Energy》2012
This paper presents experimental results of a diesel steam reforming fuel processor operated in conjunction with a gas cleanup module and coupled operation with a PEM fuel cell. The fuel processor was operated with two different precious-metal based reformer catalysts, using diesel surrogate with a sulfur content of less than 2 ppmw as fuel. The first reformer catalyst entails an increasing residual hydrocarbon concentration for increasing reformer fuel feed. The second reformer catalyst exhibits a significantly lower residual hydrocarbon concentration in the reformate gas. 相似文献
9.
Minseok Bae Hyungjun Cheon Jiwoo Oh Dongyeon Kim Joongmyeon Bae Sai P. Katikaneni 《International Journal of Hydrogen Energy》2021,46(52):26575-26581
A rapid start-up strategy of a diesel reformer for on-board fuel cell applications was developed by fuel cell integration. With the integration with metal-supported solid oxide fuel cell which has high thermal shock resistance, a simpler and faster start-up protocol of the diesel reformer was obtained compared to that of the independent reformer setup without considering fuel cell integration. A reformer without fuel cell integration showed unstable reactor temperatures during the start-up process, which affects the reforming catalyst durability. By utilizing waste heat from the fuel cell stack, steam required at the diesel autothermal reforming could be stably provided during the start-up process. The developed diesel reformer was thermally sustainable after the initial heat-up process. As a result, the overall start-up time of the reformer after the diesel supply was reduced to 9 min from the diesel supply compared to 22 min without fuel cell integration. 相似文献
10.
Philip Engelhardt Marius Maximini Frank Beckmann Martin Brenner Oliver Moritz 《International Journal of Hydrogen Energy》2014
Polymer electrolyte fuel cells (PEFC) combined with diesel fuel processors offer a great potential for auxiliary power units (APU) in mobile applications. In a joint research project with partners from industry, Oel-Waerme-Institut GmbH is developing an integrated modular fuel cell system for mobile power generation in caravans and yachts. The system includes a steam reforming fuel processor that allows the operation of low-temperature (LT-) as well as high-temperature (HT-) PEFC. 相似文献
11.
Exhaust gas assisted fuel reforming is an attractive on-board hydrogen production method, which can open new frontiers in diesel engines. Apart from hydrogen, and depending on the reactions promoted, the reformate typically contains a significant amount of carbon monoxide, which is produced as a by-product. Moreover, admission of reformed gas into the engine, through the inlet pipe, leads to an increase of intake air nitrogen to oxygen ratio. It is therefore necessary to study how a mixture of syngas and nitrogen affects the performance and emissions of a diesel engine, in order to gain a better understanding of the effects of supplying fuel reformer products into the engine. 相似文献
12.
Marius Maximini Philip Engelhardt Martin Brenner Frank Beckmann Oliver Moritz 《International Journal of Hydrogen Energy》2014
Fuel cell systems based on liquid fuels are particularly suitable for auxiliary power generation due to the high energy density of the fuel and its easy storage. Together with industrial partners, Oel-Waerme-Institut is developing a 3 kWel PEM fuel cell system based on diesel steam reforming to be applied as an APU for caravans and yachts. The start-up time of a fuel cell APU is of crucial importance since a buffer battery has to supply electric power until the system is ready to take over. Therefore, the start-up time directly affects the battery capacity and consequently the system size, weight, and cost. 相似文献
13.
14.
《International Journal of Hydrogen Energy》2020,45(53):29345-29355
In this paper catalyst temperature and hydrogen flow rate controls are an area of interest for autothermal reforming (ATR) of diesel fuel to provide continuous and necessary hydrogen flow to the on-board fuel cell vehicle system. ATR control system design is important to ensure proper and stable performance of fuel processor and fuel cell stack. Fast system response is required for varying load changes in the on-board fuel cell system. To cope with control objectives, a combination of PI and PID controllers are proposed to keep the controlled variables on their setpoints. ATR catalyst temperature is controlled with feedback PID controller through variable OCR (oxygen to carbon ratio) manipulation and kept to the setpoint value of 900 °C. Additionally diesel auto-ignition delay time is implemented through fuel flow rate delay to avoid complete oxidation of fuel. Hydrogen flow rate to the fuel cell stack is kept to setpoint of required hydrogen flow rate according to fuel cell load current using PI controller. An integrated dynamic model of fuel processor and fuel cell stack is also developed to check the fuel cell voltage. Product gas composition of 35, 18 and 4% is achieved for hydrogen, nitrogen, and carbon dioxide, respectively. The results show fast response capabilities of fuel processor following the fuel cell load change and successfully fulfills the control objectives. 相似文献
15.
A 2‐D steady‐state mathematical model of a tubular solid oxide fuel cell with indirect internal reforming (IIR‐SOFC) has been developed to examine the chemical and electrochemical processes and the effect of different operating parameters on the cell performance. The conservation equations for energy, mass, momentum as well as the electrochemical equations are solved simultaneously employing numerical techniques. A co‐flow configuration is considered for gas streams in the air and fuel channels. The heat radiation between the preheater and reformer surface is incorporated into the model and local heat transfer coefficients are determined throughout the channels. The model predictions have been compared with the data available in the literature. The model was used to study the effect of various operating conditions on the cell performance. Numerical results indicate that as the cell operating pressure increases, the reforming reaction extends to a larger portion of the cell and the maximum temperature move away from the cell inlet. As a result, a more uniform temperature prevails in the solid structure which reduces thermal stresses. Also, at higher excess air, the rate of heat transfer to the air stream is augmented and the average cell temperature is decreased. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
16.
The effects of direct internal reforming in a fuel cell solid oxide (SOFC) on thermal fields are studied by mathematical modeling. This study presents the thermal fields of a standard fuel cell (Ni-YSZ/YSZ/LSM) anode supported. This study is also made in the perpendicular plane at the flow of gases. The fuel cell is powered by air and fuel, CH4, H2, CO2, CO and H2O hence the birth of the phenomenon of direct internal reforming (DIR-SOFC). It is based on reforming chemical reactions, steam reforming reaction and water–gas shift reaction. The main purpose of this work is the visualization of temperature fields under the influence of global chemical reactions and the confirmation of the thermal behavior of this chemical reaction. The thermal fields are obtained by a computer program (FORTRAN). 相似文献
17.
Sangho Yoon Joongmyeon Bae Sangho Lee Thang V. Pham Sai P. Katikaneni 《International Journal of Hydrogen Energy》2012
Post-reforming experimental results for the complete removal of light hydrocarbons from diesel reformate are introduced in part I. In part II of the paper, an integrated diesel fuel processor is investigated for the stable operation of SOFCs. Several post-reforming processors have been operated to suppress both sulfur poisoning and carbon deposition on the anode catalyst. The integrated diesel fuel processor is composed of an autothermal reformer, a desulfurizer, and a post-reformer. The autothermal reforming section in the integrated diesel fuel processor effectively decomposes aromatics, and converts fuel into H2-rich syngas. The subsequent desulfurizer removes sulfur-containing compounds present in the diesel reformate. Finally, the post-reformer completely removes the light hydrocarbons, which are carbon precursors, in the diesel reformate. We successfully operate the diesel reformer, desulfurizer, and post-reformer as microreactors for about 2500 h in an integrated mode. The degradation rate of the overall reforming performance is negligible for the 2000 h, and light hydrocarbons and sulfur-containing compounds are completely removed from the diesel reformate. 相似文献
18.
This paper presents thermodynamic analysis of commercial diesel with 50 ppm sulfur content for the three common modes of reforming operations. Thermodynamic analysis is done to get boundary data for carbon formation and to get the composition of various species for all modes and entire range of operations. For steam reforming operation, steam-to-carbon (S/C) ratio equal to or greater than 2 is required for carbon-free operation in entire temperature range (400–800 °C). However, selection of S/C ratio requires the balance between maximizing the hydrogen yield and minimizing the energy input both of which increase with increasing S/C ratio. For partial oxidation operation, O2/C ratio of 0.75 is preferable to maximize hydrogen yield but carbon formation can occur if regions of reactor experience temperatures lower than 700 °C. In case of autothermal reforming, for carbon-free operation, temperature of 750 °C, O2/C ratio in the range of 0.125–0.25 and S/C ratio greater than 1.25 and ideally 1.75 is recommended. However, enthalpy analysis indicates that it is not possible to reach to thermoneutral point at this condition so it is better to operate O2/C ratio 0.25 or little higher with constant heat supply. A set of three independent reactions is proposed that along with element balance equations can adequately describe the equilibrium composition of six major species—H2, CO2, CO, H2O, CH4, and C for the entire range of reforming operation. 相似文献
19.
Diesel has high-hydrogen density and well-developed infrastructure, which are beneficial properties for fuel cell commercialization. However, diesel reforming poses several technical difficulties, including carbon deposition, sulfur poisoning, and fuel delivery. Specifically, carbon deposition can cause catastrophic failures in diesel reformers. In diesel reformate gas, the concentration of ethylene, a carbon precursor, is higher than other shorter hydrocarbons (C2–C4). In this study, we examine the cause of ethylene formation in diesel reforming. Ethylene formation can be closely related to paraffins' decomposition from homogeneous reaction. A portion of the catalyst active sites can become occupied with aromatic compounds, degrading the activity of the catalyst. Thus, a portion of the paraffins is decomposed via non-catalytic, homogeneous reactions, accounting for much of the observed ethylene formation. In this study, reforming conditions and fuel delivery method are investigated with respect to ethylene formation. By using a diesel ultrasonic injector, reactant mixing was enhanced, resulting in suppression of ethylene formation. This subsequently inhibited the ethylene-induced carbon deposition and improved the long-term performance of diesel ATR (autothermal reforming). 相似文献
20.
《International Journal of Hydrogen Energy》2022,47(21):11316-11325
The detailed experimental studies of the autothermal and steam reforming of model mixtures simulating the composition of commercial diesel fuel were carried out over Rh/Ce0.75Zr0.25O2-δ-?-Al2O3/FeCrAl wire mesh honeycomb catalytic modules. The components of the diesel surrogates were n-hexadecane, o-xylene, and naphthalene as model compounds of aliphatics, mono-aromatics and diaromatics, respectively. It was shown that low reaction rate of diaromatics steam reforming facilitated increasing concentration of C1–C5 hydrocarbon by-products (primarily ethylene) in the gas phase, as well as formation of polyaromatic compounds by concurrent condensation reaction. These undesirable processes were responsible for increasing catalyst coking. Monoaromatic constituents hadn't any significant effect on the progress of undesirable side-reactions during autothermal and steam reforming of diesel surrogates. 相似文献