共查询到20条相似文献,搜索用时 0 毫秒
1.
Sunyoung Kim Hans-Heinrich Carstensen Anthony M. Dean Joongmyeon Bae 《International Journal of Hydrogen Energy》2012
Mixture preparation technology plays a critical role in ensuring reformate quality during autothermal reforming of liquid fuels. Incomplete mixing can cause temperature overshoots and deposit formation within the catalyst bed. However, the time available for mixing is limited by unwanted gas-phase reactions that produce deposit precursors. We perform an analysis of the gas-phase reactions in the mixing region using a well-tested alkane oxidation mechanism taken from the literature. One particularly interesting prediction is that the time for significant reaction to occur does not monotonically decrease as the temperature increases. This is due to the negative temperature coefficient (NTC) kinetics. By mixing within the NTC temperature window, it should be possible to provide substantially more time for mixing. Similarly, one can expand the mixing time by suitable choices of mixture composition. These results provide important guidance criteria for the optimization of a mixer design to avoid undesirable reactions. 相似文献
2.
To ensure the proper performance of a hydrocarbon reformer, the fuel and reforming agents should be mixed properly within a short time to suppress gas-phase ethylene production, a well-known deposit precursor that could lead downstream catalyst failure. To examine potential interactions between reactant mixing and gas-phase reaction kinetics in the mixing region, coupled computational fluid dynamics (CFD)-kinetics simulations are performed for autothermal reforming. n-heptane is selected as a representative hydrocarbon fuel. The simulations show clear Negative Temperature Coefficient (NTC) behavior within the temperature range of 450–625 °C. At temperatures below the NTC region, the gas-phase reactions are rapid and highly exothermic, making the impact of mixing substantial. Ethylene is produced via a partial oxidation mechanism and is enhanced when the local O/C ratio exceeds the global value. Above the NTC region, ethylene is primarily produced from slower pyrolysis reactions, and then efficient mixing slightly suppresses the ethylene yield. The results suggest the counterintuitive conclusion that mixing at higher temperatures actually suppresses the undesirable reactions. 相似文献
3.
Technology for the reforming of heavy hydrocarbons, such as diesel, to supply hydrogen for fuel cell applications is very attractive and challenging due to its delicate control requirements. The slow reforming kinetics of aromatics contained in diesel, sulfur poisoning, and severe carbon deposition make it difficult to obtain long-term performance with high reforming efficiency. In addition, diesel has a critical mixing problem due to its high boiling point, which results in a fluctuation of reforming efficiency. An ultrasonic injector (UI) have been devised for effective diesel delivery. The UI can atomize diesel into droplets (∼40 μm) by using a piezoelectric transducer and consumes much less power than a heating-type vapourizer. In addition, reforming efficiencies increase by as much as 20% compared with a non-UI reformer under the same operation conditions. Therefore, it appears that effective fuel delivery is linked to the reforming kinetics on the catalyst surface. A 100-We, self-sustaining, diesel autothermal reformer using the UI is designed. In addition, the deactivation process of the catalyst, by carbon deposition, is investigated in detail. 相似文献
4.
Marius Maximini Philip Engelhardt Melanie Grote Martin Brenner 《International Journal of Hydrogen Energy》2012
This paper presents results from the ongoing optimisation of a microchannel steam reformer for diesel fuel which is developed in the framework of the development of a PEM fuel cell system for vehicular applications. Four downscaled reformers with different catalytic coatings of precious metal were operated in order to identify the most favourable catalyst formulation. Diesel surrogate was processed at varying temperatures and steam to carbon ratios (S/C). The reformer performance was investigated considering hydrogen yield, reformate composition, fuel conversion, and deactivation from carbon formation. Complete fuel conversion is obtained with several catalysts. One catalyst in particular is less susceptible to carbon formation and shows a high selectivity. 相似文献
5.
M. Grote M. MaximiniZ. Yang P. EngelhardtH. Köhne K. LuckaM. Brenner 《Journal of power sources》2011,196(21):9027-9035
The present work describes the optimisation of a compact steam reformer for light fuel oil and diesel fuel. The reformer is based upon a catalytically coated micro heat exchanger that thermally couples the reforming reaction with a catalytic combustion. Since the reforming process is sensitive to reaction temperatures and internal flow patterns, the reformer was modelled using a commercial CFD code in order to optimise its geometry. Fluid flow, heat transfer and chemical reactions were considered on both sides of the heat exchanger. The model was successfully validated with experimental data from reformer tests with 4 kW, 6 kW and 10 kW thermal inputs of light fuel oil. In further simulations the model was applied to investigate parallel flow, counter flow and cross flow conditions along with inlet geometry variations for the reformer. The experimental results show that the reformer design allows inlet temperatures below 773 K because of its internal superheating capability. The simulation results indicate that two parallel flow configurations provide fast superheating and high fuel conversion rates. The temperature increase inside the reactor is influenced by the inlet geometry on the combustion side. 相似文献
6.
Philip Engelhardt Marius Maximini Frank Beckmann Martin Brenner 《International Journal of Hydrogen Energy》2012
This paper presents experimental results of a diesel steam reforming fuel processor operated in conjunction with a gas cleanup module and coupled operation with a PEM fuel cell. The fuel processor was operated with two different precious-metal based reformer catalysts, using diesel surrogate with a sulfur content of less than 2 ppmw as fuel. The first reformer catalyst entails an increasing residual hydrocarbon concentration for increasing reformer fuel feed. The second reformer catalyst exhibits a significantly lower residual hydrocarbon concentration in the reformate gas. 相似文献
7.
Minseok Bae Hyungjun Cheon Jiwoo Oh Dongyeon Kim Joongmyeon Bae Sai P. Katikaneni 《International Journal of Hydrogen Energy》2021,46(52):26575-26581
A rapid start-up strategy of a diesel reformer for on-board fuel cell applications was developed by fuel cell integration. With the integration with metal-supported solid oxide fuel cell which has high thermal shock resistance, a simpler and faster start-up protocol of the diesel reformer was obtained compared to that of the independent reformer setup without considering fuel cell integration. A reformer without fuel cell integration showed unstable reactor temperatures during the start-up process, which affects the reforming catalyst durability. By utilizing waste heat from the fuel cell stack, steam required at the diesel autothermal reforming could be stably provided during the start-up process. The developed diesel reformer was thermally sustainable after the initial heat-up process. As a result, the overall start-up time of the reformer after the diesel supply was reduced to 9 min from the diesel supply compared to 22 min without fuel cell integration. 相似文献
8.
Philip Engelhardt Marius Maximini Frank Beckmann Martin Brenner Oliver Moritz 《International Journal of Hydrogen Energy》2014
Polymer electrolyte fuel cells (PEFC) combined with diesel fuel processors offer a great potential for auxiliary power units (APU) in mobile applications. In a joint research project with partners from industry, Oel-Waerme-Institut GmbH is developing an integrated modular fuel cell system for mobile power generation in caravans and yachts. The system includes a steam reforming fuel processor that allows the operation of low-temperature (LT-) as well as high-temperature (HT-) PEFC. 相似文献
9.
Exhaust gas assisted fuel reforming is an attractive on-board hydrogen production method, which can open new frontiers in diesel engines. Apart from hydrogen, and depending on the reactions promoted, the reformate typically contains a significant amount of carbon monoxide, which is produced as a by-product. Moreover, admission of reformed gas into the engine, through the inlet pipe, leads to an increase of intake air nitrogen to oxygen ratio. It is therefore necessary to study how a mixture of syngas and nitrogen affects the performance and emissions of a diesel engine, in order to gain a better understanding of the effects of supplying fuel reformer products into the engine. 相似文献
10.
Marius Maximini Philip Engelhardt Martin Brenner Frank Beckmann Oliver Moritz 《International Journal of Hydrogen Energy》2014
Fuel cell systems based on liquid fuels are particularly suitable for auxiliary power generation due to the high energy density of the fuel and its easy storage. Together with industrial partners, Oel-Waerme-Institut is developing a 3 kWel PEM fuel cell system based on diesel steam reforming to be applied as an APU for caravans and yachts. The start-up time of a fuel cell APU is of crucial importance since a buffer battery has to supply electric power until the system is ready to take over. Therefore, the start-up time directly affects the battery capacity and consequently the system size, weight, and cost. 相似文献
11.
The effects of direct internal reforming in a fuel cell solid oxide (SOFC) on thermal fields are studied by mathematical modeling. This study presents the thermal fields of a standard fuel cell (Ni-YSZ/YSZ/LSM) anode supported. This study is also made in the perpendicular plane at the flow of gases. The fuel cell is powered by air and fuel, CH4, H2, CO2, CO and H2O hence the birth of the phenomenon of direct internal reforming (DIR-SOFC). It is based on reforming chemical reactions, steam reforming reaction and water–gas shift reaction. The main purpose of this work is the visualization of temperature fields under the influence of global chemical reactions and the confirmation of the thermal behavior of this chemical reaction. The thermal fields are obtained by a computer program (FORTRAN). 相似文献
12.
Sangho Yoon Joongmyeon Bae Sangho Lee Thang V. Pham Sai P. Katikaneni 《International Journal of Hydrogen Energy》2012
Post-reforming experimental results for the complete removal of light hydrocarbons from diesel reformate are introduced in part I. In part II of the paper, an integrated diesel fuel processor is investigated for the stable operation of SOFCs. Several post-reforming processors have been operated to suppress both sulfur poisoning and carbon deposition on the anode catalyst. The integrated diesel fuel processor is composed of an autothermal reformer, a desulfurizer, and a post-reformer. The autothermal reforming section in the integrated diesel fuel processor effectively decomposes aromatics, and converts fuel into H2-rich syngas. The subsequent desulfurizer removes sulfur-containing compounds present in the diesel reformate. Finally, the post-reformer completely removes the light hydrocarbons, which are carbon precursors, in the diesel reformate. We successfully operate the diesel reformer, desulfurizer, and post-reformer as microreactors for about 2500 h in an integrated mode. The degradation rate of the overall reforming performance is negligible for the 2000 h, and light hydrocarbons and sulfur-containing compounds are completely removed from the diesel reformate. 相似文献
13.
This paper presents thermodynamic analysis of commercial diesel with 50 ppm sulfur content for the three common modes of reforming operations. Thermodynamic analysis is done to get boundary data for carbon formation and to get the composition of various species for all modes and entire range of operations. For steam reforming operation, steam-to-carbon (S/C) ratio equal to or greater than 2 is required for carbon-free operation in entire temperature range (400–800 °C). However, selection of S/C ratio requires the balance between maximizing the hydrogen yield and minimizing the energy input both of which increase with increasing S/C ratio. For partial oxidation operation, O2/C ratio of 0.75 is preferable to maximize hydrogen yield but carbon formation can occur if regions of reactor experience temperatures lower than 700 °C. In case of autothermal reforming, for carbon-free operation, temperature of 750 °C, O2/C ratio in the range of 0.125–0.25 and S/C ratio greater than 1.25 and ideally 1.75 is recommended. However, enthalpy analysis indicates that it is not possible to reach to thermoneutral point at this condition so it is better to operate O2/C ratio 0.25 or little higher with constant heat supply. A set of three independent reactions is proposed that along with element balance equations can adequately describe the equilibrium composition of six major species—H2, CO2, CO, H2O, CH4, and C for the entire range of reforming operation. 相似文献
14.
Diesel has high-hydrogen density and well-developed infrastructure, which are beneficial properties for fuel cell commercialization. However, diesel reforming poses several technical difficulties, including carbon deposition, sulfur poisoning, and fuel delivery. Specifically, carbon deposition can cause catastrophic failures in diesel reformers. In diesel reformate gas, the concentration of ethylene, a carbon precursor, is higher than other shorter hydrocarbons (C2–C4). In this study, we examine the cause of ethylene formation in diesel reforming. Ethylene formation can be closely related to paraffins' decomposition from homogeneous reaction. A portion of the catalyst active sites can become occupied with aromatic compounds, degrading the activity of the catalyst. Thus, a portion of the paraffins is decomposed via non-catalytic, homogeneous reactions, accounting for much of the observed ethylene formation. In this study, reforming conditions and fuel delivery method are investigated with respect to ethylene formation. By using a diesel ultrasonic injector, reactant mixing was enhanced, resulting in suppression of ethylene formation. This subsequently inhibited the ethylene-induced carbon deposition and improved the long-term performance of diesel ATR (autothermal reforming). 相似文献
15.
Steam reforming performance in a coupled reactor that consists of a steam reformer and a catalytic combustor is experimentally investigated in this study. Endothermic steam reforming can occur through the absorption of heat from the catalytic combustion of the anode offgas in a heat-exchanging coupled reactor. The reaction characteristics were observed by varying parameters such as the inlet temperature of the catalytic combustor, the excess air ratio for the catalytic combustion, the fuel utilization rate in the fuel cells, and the steam-to-carbon ratio in the steam reformer. The reactor temperature and reformate composition were measured to analyze the performance of the reactor. The results show the potential applicability and design technologies of the coupled reactor for the fuel processing of high temperature fuel cells using an external reformer. 相似文献
16.
A hydrocarbon-selective catalytic reduction (HC-SCR) silver–alumina monolith catalyst has been prepared and tested for NOx emissions control in a diesel engine. The work is based on ongoing laboratory experiments, catalyst research, and process development. Hydrogen and actual reformate (i.e. H2 and hydrocarbon species produced in a partial and exhaust gas fuel reformer) significantly improved the passive control (i.e. no externally added hydrocarbons) NOx reduction activity over the SCR catalyst using the whole engine exhaust gas from a single-cylinder diesel engine. Optimisation of the reforming process is required for various engine conditions in order to maximise H2 production and minimise fuel penalty. When diesel fuel partial oxidation and exhaust gas reforming for SCR were implemented, the calculated fuel penalty was in the range of 5–10%, which is relatively high, as both reformers were not optimised yet. During HC-SCR of NOx over silver–alumina, the known promoting effect of H2 has been found to be sensitive to various factors, especially the engine exhaust gas temperature, H2 concentration, HC concentration, HC:NOx ratio, and space velocity. Under active control (i.e. hydrocarbon injection) SCR operation, powdered Ag–Al2O3 catalysts gave significantly higher initial NOx reduction, but the catalyst activity deteriorated rapidly with time due to poisoning species adsorption (e.g. HCs, nitrates, particulate matter (PM), etc.), whilst for the Ag–Al2O3-coated monolithic catalysts, NOx reduction activity was lower but remained constant for the duration of the tests. The improved physical (mass transfer, filtering of C-containing species) and chemical (reaction kinetics) processes during HC-SCR over powders compared to monoliths led to better initial catalyst activity, but it also accelerated catalyst deactivation which led to increased diffusion limitations. 相似文献
17.
Samuel Koomson Ebenezer Arthur Choong-Gon Lee 《International Journal of Hydrogen Energy》2021,46(8):6127-6138
Reaction mechanisms and performance improvement in solid oxide fuel cells (SOFCs) have been the major research areas in this field. There are several discrepancies associated with the kinetics of SOFCs due to the contradicting theories proposed by researchers in this area. This work aims at determining the overpotential due to the gas-phase mass transfer resistance at the various electrodes and the possible electrode reaction characteristics using the inert gas step addition (ISA) method proposed by this research group. The ISA method can quantitatively measure the overpotentials due to the mass transfer resistance at each electrode. The ISA method shows an inverse relationship between the overpotential shift and the square root of the reactant gas flow rate according to the boundary layer theory. The overpotential due to the gas-phase mass transfer resistance is expected to be much higher at the anode than at the cathode, indicating the presence of considerable gas-phase mass transfer resistance at the anode. 相似文献
18.
M. O'Connell G. Kolb K.P. Schelhaas J. Schuerer D. Tiemann A. Ziogas V. Hessel 《International Journal of Hydrogen Energy》2009
The development and evaluation of a reactor based on microchannel technology for the reforming of diesel fuel is reported. The reactor itself was based on an integrated reformer/burner heat exchange reactor concept. 38 h of diesel reforming was performed at temperatures above 750 °C and at various S/C ratios, down to a minimum of 3.17, up to an electrical power equivalent of 5 kW. Over 98% total diesel conversion was observed at all times over the testing period. Variation of experimental parameters such as O/C and S/C ratios are critical for optimum operation of the reformer. 相似文献
19.
İlker Temizer 《Energy Sources, Part A: Recovery, Utilization, and Environmental Effects》2021,43(1):17-34
ABSTRACT In this study, the effects on combustion characteristics and emission were investigated in a direct injection diesel engine. In experimental and numerical studies, the engine was operated at 2000 rpm. The analyzes were made in the AVL-FIRE ESE Diesel part with Computational Fluid Dynamics (CFD) software. Standard combustion chamber (SCC) and Modified combustion chamber (MCC) geometry were compared in the modeling. By means of the designed MCC combustion chamber geometry, the fuel released from the injector was directed to the piston bowl area. Therefore, the mixture was homogenized and the combustion had been improved. In addition, the evaporation rate of the mixture increased with the MCC geometry. Also, lower NO and CO emissions were obtained with the MCC model compared to the SCC model. On the other hand, diesel fuel and mass 5% hydrogen fuel was used into diesel fuel as fuel in the study. The combustion process was investigated using hydrogen in different combustion chambers. The use of hydrogen as additional fuel resulted in higher combustion pressure, temperature and NO emissions. Compared to SCC type combustion chamber in the MCC type combustion chamber used diesel fuel, CO emission decreased of 6% and 3% for hydrogen-added mixture fuel. Also, compared to SCC type combustion chamber in the MCC type combustion chamber used diesel fuel, NO emission decreased of 11% and 32% for hydrogen-added mixture fuel. Moreover, flame velocity, heat release rate and flame propagation increased with the addition of hydrogen fuel. 相似文献
20.
The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with conventional diesel fuel. Various techniques and methods are used to solve the problems resulting from high viscosity. One of these techniques is fuel blending. In this study, a blend of 50% sesame oil and 50% diesel fuel was used as an alternative fuel in a direct injection diesel engine. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power and torque of the mixture of sesame oil–diesel fuel are close to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that blend of sesame oil and diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification and also it is an environmental friendly fuel in terms of emission parameters. 相似文献