首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dopamine is widely distributed in the crustacean nervous system and has a diverse array of physiological effects. Immunocytochemical studies of several species have shown that dopamine- and/or tyrosine hydroxylase-containing cells occur in all ganglia of the central nervous system and that processes from some of these cells link ganglia of the ventral nerve cord. This study describes the distribution of tyrosine hydroxylase-containing cells in the central nervous system of a crayfish (Orconectes rusticus) and compares this information to available data from other species. The distribution of tyrosine hydroxylase (an enzyme in the synthetic pathway between tyrosine and dopamine) in O. rusticus is similar to that reported for marine species. However, differences were observed in the number of neurons in some ganglia and in the axonal projections of the L cell, which were more extensive in O. rusticus than in other species studied thus far. We also review the physiological effects of dopamine in crayfish and other crustaceans, focusing on the amine's actions in the endocrine, cardiovascular, and nervous systems, and on behavior when injected into freely-moving animals.  相似文献   

2.
The mud crab, Scylla olivacea, is one of the most economically valuable marine species in Southeast Asian countries. However, commercial cultivation is disadvantaged by reduced reproductive capacity in captivity. Therefore, an understanding of the general and detailed anatomy of central nervous system (CNS) is required before investigating the distribution and functions of neurotransmitters, neurohormones, and other biomolecules, involved with reproduction. We found that the anatomical structure of the brain is similar to other crabs. However, the ventral nerve cord (VNC) is unlike other caridian and dendrobrachiate decapods, as the subesophageal (SEG), thoracic and abdominal ganglia are fused, due to the reduction of abdominal segments and the tail. Neurons in clusters within the CNS varied in sizes, and we found that there were five distinct size classes (i.e., very small globuli, small, medium, large, and giant). Clusters in the brain and SEG contained mainly very small globuli and small‐sized neurons, whereas, the VNC contained small‐, medium‐, large‐, and giant‐sized neurons. We postulate that the different sized neurons are involved in different functions. Microsc. Res. Tech. 77:189–200, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
The Orthopteran central nervous system has proved a fertile substrate for combined morphological and physiological studies of identified neurons. Electron microscopy reveals two major types of synaptic contacts between nerve fibres: chemical synapses (which predominate) and electrotonic (gap) junctions. The chemical synapses are characterized by a structural asymmetry between the pre- and postsynaptic electron dense paramembranous structures. The postsynaptic paramembranous density defines the extent of a synaptic contact that varies according to synaptic type and location in single identified neurons. Synaptic bars are the most prominent presynaptic element at both monadic and dyadic (divergent) synapses. These are associated with small electron lucent synaptic vesicles in neurons that are cholinergic or glutamatergic (round vesicles) or GABAergic (pleomorphic vesicles). Dense core vesicles of different sizes are indicative of the presence of peptide or amine transmitters. Synapses are mostly found on small-diameter neuropilar branches and the number of synaptic contacts constituting a single physiological synapse ranges from a few tens to several thousand depending on the neurones involved. Some principles of synaptic circuitry can be deduced from the analysis of highly ordered brain neuropiles. With the light microscope, synaptic location can be inferred from the distribution of the presynaptic protein synapsin I. In the ventral nerve cord, identified neurons that are components of circuits subserving known behaviours, have been studied using electrophysiology in combination with light and electron microscopy and immunocytochemistry of neuroactive compounds. This has allowed the synaptic distribution of the major classes of neurone in the ventral nerve cord to be analysed within a functional context.  相似文献   

4.
S100 proteins are EF-hand calcium-binding protein highly preserved during evolution present in both neuronal and non-neuronal tissues of the higher vertebrates. Data about the expression of S100 protein in fishes are scarce, and no data are available on zebrafish, a common model used in biology to study development but also human diseases. In this study, we have investigated the expression of S100 protein in the central nervous system of adult zebrafish using PCR, Western blot, and immunohistochemistry. The central nervous system of the adult zebrafish express S100 protein mRNA, and contain a protein of approximately 10 kDa identified as S100 protein. S100 protein immunoreactivity was detected widespread distributed in the central nervous system, labeling the cytoplasm of both neuronal and non-neuronal cells. In fact, S100 protein immunoreactivity was primarily found in glial and ependymal cells, whereas the only neurons displaying S100 immunoreactivity were the Purkinje's neurons of the cerebellar cortex and those forming the deep cerebellar nuclei. Outside the central nervous system, S100 protein immunoreactivity was observed in a subpopulation of sensory and sympathetic neurons, and it was absent from the enteric nervous system. The functional role of S100 protein in both neurons and non-neuronal cells of the zebrafish central nervous system remains to be elucidated, but present results might serve as baseline for future experimental studies using this teleost as a model.  相似文献   

5.
Adrenomedullin in the central nervous system   总被引:7,自引:0,他引:7  
Adrenomedullin (AM) is a novel vasodilator peptide first purified from human pheochromocytoma by tracing its capacity to stimulate cAMP production in platelets. AM immunoreactivity is widely distributed in the central nervous system (CNS) and in the rat has been demonstrated by immunohistochemical techniques to be present in many neurons throughout the brain and spinal cord, as well as in some vascular endothelial cells and perivascular glial cells. Electron microscopy shows that the immunoreactivity is located mainly in the neuronal cytoplasm, but also occurs in the cell nucleus in some cells of the caudate putamen and olfactory tubercle. Biochemical analyses suggest that higher molecular forms, presumably precursor forms, may predominate over fully processed AM in some brain areas. The expression of AM immunoreactivity is increased in cortical neurons, endothelial cells, and perivascular processes after a simulation of ischemia by oxygen and glucose deprivation. Immunohistochemical, electrophysiological, and pharmacological studies suggest that AM in the CNS can act as a neurotransmitter, neuromodulator, or neurohormone, or as a cytoprotective factor in ischemic/hypoxic conditions, in addition to its vasodilator role.  相似文献   

6.
The data reviewed here show that histamine, octopamine, and serotonin are abundant in the visual system of the horseshoe crab Limulus polyphemus. Anatomical and biochemical evidence, including new biochemical data presented here, indicates that histamine is a neurotransmitter in primary retinal afferents, and that it may be involved in visual information processing within the lateral eye. The presence of histamine in neurons of the central nervous system outside of the visual centers suggests that this amine also has functions unrelated to vision. However, the physiological actions of histamine in the Limulus nervous system are not yet known. Octopamine is present in and released from the axons of neurons that transmit circadian information from the brain to the eyes, and octopamine mimics the actions of circadian input on many retinal functions. In addition, octopamine probably has major functions in other parts of the nervous system as octopamine immunoreactive processes are widely distributed in the central nervous system and in peripheral motor nerves. Indeed, octopamine modulates functions of the heart and exoskeletal muscles as well as the eyes. A surprising finding is that although octopamine is a circulating neurohormone in Limulus, there is no structural evidence for its release into the hemolymph from central sites. The distribution of serotonin in Limulus brain suggests this amine modulates the central processing of visual information. Serotonin modulates cholinergic synapses in the central nervous system, but nothing further is known about its physiological actions.  相似文献   

7.
Neuropeptides are peptides with profound effects on the nervous system. The function of neuropeptides can be studied in detail in the stomatogastric nervous system (STNS). Neuropeptides are ubiquitously distributed in the STNS and it contains well-studied neural circuits that are strongly modulated by neuropeptides. The STNS controls the movements of the foregut in crustaceans and has been studied intensively in a variety of decapod crustaceans including crayfish. This article reviews our knowledge of neuropeptides in the crayfish STNS. Within crayfish, peptides reach the circuits of the STNS as neurohormones released by neurohaemal organs or by putative neurohemal zones located within the STNS. As transmitters, neuropeptides are present in identified motoneurons, interneurons, and sensory neurons (mainly shown by immunocytochemistry), indicating a multiple role of peptides in the plasticity of neural networks. Neuropeptides are not only present in varicosities within the neuropil of ganglia, but also in varicosities on muscles and within small neuropil patches along nerves. This suggests that the muscles of the stomach are under a more direct modulatory control than previously thought, and that information processing can also occur within nerves. In addition to anatomical studies, biochemical and electrophysiological methods were used. For example, MALDI-TOF MS (matrix-assisted laser desorption ionization time of flight mass spectrometry) revealed the presence of four different peptides of the orcokinin family within a single neuron, and electrophysiological experiments demonstrated that the networks of the STNS are not only under excitatory but also inhibitory peptidergic influence. Comparing the similarities and differences between the STNS of crayfish and that of other decapod crustaceans has already contributed to our knowledge about peptides and will further help to unravel peptide function in the plasticity of neural circuits. For example, the identified neurons in the STNS can be used to study co-transmission because neuropeptides are co-localized with classical transmitters, biogenic amines, or other peptides in these neurons.  相似文献   

8.
The authors have studied the size and composition of the rat optic nerve at three points along its course. The relative volume of myelinated nerve fibres increases that of the chiasma, whereas the relative volume of interstitium decreases. The decrease of interstitial volume is mainly related to the decrease of glial cell number. Determination of absolute volumes of myelinated fibres and interstitium shows that the volume changes are due to two factors: (a) From the eyebulb to the intermediate portion the interstitial volume decreases, whereas the absolute volume of myelinated fibres remains constant. (b) From the intermediate portion to the chiasma the volume of myelinated fibres increases significantly, whereas the further decrease of interstitial volume is small. The diameter of nerve cross-section is significantly smaller in the intermediate portion of the optic nerve than near the eyebulb and the chiasma. Here the nerve passes the canalis opticus. The density of glial cells decreases from eyebulb to the chiasma as does the density of pericytes and endothelial cells. The latter makes up only 2·3–3·9% of the density of cells in the interstitial space. The mean volume of a glial cell remains constant at about 1260 μm3 along the path of the optic nerve from eyebulb to chiasma. The number of myelinated nerve fibres is also constant along the path of the optic nerve. There are 107,000 ± 6900 fibres.  相似文献   

9.
The monoamines dopamine, noradrenaline, adrenaline, and serotonin as well as the diamine histamine have a widespread distribution in the central nervous system within synaptic terminals and nonsynaptic varicosities. In certain regions of the central nervous system the monoamines are contained in varicosities that have no synaptic specialization associated with them, suggesting a possible neuromodulatory role for some of the monoamines. The majority of monoamine labelled structures are synaptic terminals which are characterized by the presence of small, clear vesicles (40–60 nm) and large, granular vesicles (70–120 nm) within the terminal. A third population of vesicles—small, granular vesicles—which are visible only after histochemical staining, are probably the equivalent of the small, clear vesicles present after either autoradiographic or immunohistochemical labelling. Most monoamine containing terminals contact dendrites and dendritic spines and, less frequently, neuronal somata and other axons. Both asymmetrical and symmetrical membrane specializations are associated with monoaminergic terminals; however, asymmetrical contacts are the most frequent type found. These ultrastructural results indicate that monoamine containing terminals and varicosities in general share many common morphological features, but still have diverse functions.  相似文献   

10.
A number of different neuropeptides have been described within presynaptic terminals at the ultrastructural level in the central nervous system. The majority of these neuropeptides share a common morphology with one another. Terminals containing neuropeptides have a population of small, clear vesicles associated with the active zone of the synapse and a lesser number of large, granular vesicles that are located at a distance from the active site of the synapse. It is believed that the large, granular vesicles act as a mechanism for the transport/storage of the neuropeptides, while the small, clear vesicles are thought to be acting as structures responsible for the release of the neurotransmitter/neuropeptide into the synaptic cleft. The neuropeptide containing terminals most often have asymmetrical junctions associated with their presynaptic membranes, although symmetrical junctions have been described with peptide containing terminals in a number of areas in the central nervous system. Neuropeptide containing terminals contact every part of the neuronal membrane; however, the majority of synaptic contacts involve portions of the dendritic shafts. Evidence is beginning to accumulate to indicate that for certain neuropeptides there is a specific spatial arrangement to their termination along the neuronal membrane.  相似文献   

11.
Thin sections of nervous tissue were viewed at different tilt angles using a transmission electron microscope equipped with a eucentric goniometer stage. In a comparison study of various degrees of tilt, one can observe additional morphological features within synaptic profiles, define subsynaptic structures such as Taxi-bodies, and clearly see the crystalline formation of cytochemical tracers. This study demonstrates the value of tilting thin-sections in the analysis of synapses and other biological material at the ultrastructural level.  相似文献   

12.
This review attempts to give a comprehensive overview of ovarian innervation, considering the whole nervous system and its different levels that may modify the ovarian function. The connection between the ovary and the central nervous system through the autonomic pathways, including the peripheral ganglia, is highlighted. The evidence obtained over the last years highlights the role of the superior ovarian nerve (SON) in the ovarian phenomena. Besides, the effect on the ovary of conventional neurotransmitters and others such as indolamines and peptides, which have been found in this organ, are discussed. Various reproductive diseases have been studied almost exclusively from the endocrine point of view. It is evident that a better knowledge about the role of the neural factors involved in the ovarian physiology may facilitate the understanding of some of these. A review of the concepts and an update of some experimental designs is made that permits clarifying several aspects of the relationship between the neural system and the ovary. At present, there is no doubt that the innervation of the ovary is involved in several physiological aspects of this gland function. However, the relationship of some levels of the nervous system and the ovary offer a wide avenue for future research.  相似文献   

13.
This article reviews the distribution of S100 proteins in the human peripheral nervous system. The expression of S100 by peripheral glial cells seems to be a distinctive fact of these cells, independently of their localization and their ability to myelinate or not. S100 proteins expressing cells include satellite cells of sensory, sympathetic and enteric ganglia, supporting cells of the adrenal medulla, myelinating and non-myelinating Schwann cells in the nerve trunks, and the Schwann-related cells of sensory corpuscles. In addition, S100 proteins are expressed in peripheral neurons. Most of them express S100alpha protein, and a subpopulation of sensory neurons in dorsal root ganglia contains S100beta protein or S100alpha plus S100beta proteins.  相似文献   

14.
Involvement of the choroid plexus in central nervous system inflammation   总被引:9,自引:0,他引:9  
During inflammatory conditions in the central nervous system (CNS), immune cells immigrate into the CNS and can be detected in the CNS parenchyma and in the cerebrospinal fluid (CSF). The most comprehensively investigated model for CNS inflammation is experimental autoimmune encephalomyelitis (EAE), which is considered the prototype model for the human disease multiple sclerosis (MS). In EAE autoagressive CD4(+), T cells gain access to the CNS and initiate the molecular and cellular events leading to edema, inflammation, and demyelination in the CNS. The endothelial blood-brain barrier (BBB) has been considered the obvious place of entry for the circulating immune cells into the CNS. A role of the choroid plexus in the pathogenesis of EAE or MS, i.e., as an alternative entry site for circulating lymphocytes directly into the CSF, has not been seriously considered before. However, during EAE, we observed massive ultrastructural changes within the choroid plexus, which are different from changes observed during hypoxia. Using immunohistochemistry and in situ hybridization, we observed expression of VCAM-1 and ICAM-1 in the choroid plexus and demonstrated their upregulation and also de novo expression of MAdCAM-1 during EAE. Ultrastructural studies revealed polar localization of ICAM-1, VCAM-1, and MAdCAM-1 on the apical surface of choroid plexus epithelial cells and their complete absence on the fenestrated endothelial cells within the choroid plexus parenchyme. Furthermore, ICAM-1, VCAM-1, and MAdCAM-1 expressed in choroid plexus epithelium mediated binding of lymphocytes via their known ligands. In vitro, choroid plexus epithelial cells can be induced to express ICAM-1, VCAM-1, MAdCAM-1, and, additionally, MHC class I and II molecules on their surface. Taken together, our observations imply a previously unappreciated function of the choroid plexus in the immunosurveillance of the CNS.  相似文献   

15.
论文在分析发油自动化系统典型设计方案的基础上,针对现有发油系统存在的主要问题,作者提出了一种基于CAN总线的微机控制定量发油系统。说明了上,下位机在发油过程中的作用并详细介绍了电液阀的工作过程,通过油库实际运行,从而提高了发油量的准确度.  相似文献   

16.
从工程实际出发简要介绍了药液配送系统的功能与作用,结合系统的特点,设计了以PLC为基础的DCS控制系统,详细阐述了整个系统控制结构设计及其软件实现.  相似文献   

17.
18.
介绍了配电自动化系统的结构、功能和特点,该系统具备独特的故障定位、故障隔离和供电恢复功能,对配电网安全、可靠、经济、优质、高效的运行,且具有十分广阔的应用前景。  相似文献   

19.
Application of rapid freezing, freeze substitution fixation, and freeze fracture techniques to the study of synaptic junctions in the mammalian central nervous system has revealed new aspects of synaptic structure that are consistent with and partially explicate advances in synaptic biochemistry and physiology. In the axoplasm adjacent to the presynaptic active zone, synaptic vesicles are linked to large spectrin-like filamentous proteins by shorter proteins that resemble synapsin I in morphology. This mesh of presynaptic filamentous proteins serves to concentrate synaptic vesicles in the vicinity of the active zone. The affinity with which the vesicles are bound by the mesh is probably modulated by the extent of phosphorylation at specific sites on the constituent filamentous proteins, and changes in the binding affinity result in changes in transmitter release. The structural organization of the postsynaptic density in Purkinje cell dendritic spines consists of very fine strands with adherent, heterogeneous globular proteins. Some of these globular proteins probably correspond to protein kinases and their substrates. The postsynaptic density, positioned at the site of the maximal depolarization caused by synaptic currents, apparently serves as a supporting framework for a variety of proteins, which respond to and transduce postsynaptic depolarization. At least two classes of filamentous protein fill the cytoplasm of spines with a complex mesh, which presumably contributes to maintenance of the spine shape. Membrane bound cisterns are a ubiquitous feature of Purkinje cell dendritic spines. Studies of rapidly frozen tissue with electron probe microanalysis and elemental imaging reveal that these cisterns take up and sequester calcium, which is derived from the extracellular space, and which probably enters the spine as part of the synaptic current.  相似文献   

20.
以模拟单颗LED的均匀配光为例,介绍了LightTools软件在照明系统设计中的应用,以便更进一步地掌握和使用LightTools软件。文中借助LightTools软件,在单颗LED上建立反光杯模型,在反光杯出光口建立透镜阵列,并在目标照射面上建立目标区域的强度网格,通过LightTools软件的优化模块进行优化后,可在目标区域得到均匀的光强分布。利用LightTools软件进行辅助设计和优化模拟,具有很高的可信度,也可以大大缩短照明设计的周期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号