首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过冷态输送ZrCl4粉末,利用低压化学气相沉积法在C/C复合材料表面制备ZrC涂层。采用X射线衍射和扫描电镜研究沉积温度和沉积位置对ZrC涂层物相成分和微观形貌的影响。结果表明:在1 400~1 600℃时,沉积涂层物相均为单一的ZrC。ZrC晶粒择优取向随沉积温度的升高而发生变化;在1 400和1 500℃时,ZrC晶粒择优取向面为(200);1 600℃时,晶粒择优取向面转变为(220)和(200),且择优不明显;随着沉积温度的进一步升高,涂层晶粒尺寸明显增大,涂层表面ZrC颗粒由球形逐渐转变为金字塔形多面体。在1 400~1 600℃沉积时,反应器的100~230mm沉积区间内可以得到成分单一、择优取向一致、表面形貌相同的ZrC涂层。  相似文献   

2.
现代刀具涂层制备技术的研究现状   总被引:1,自引:0,他引:1  
刀具涂层是一种机床工具行业的重要材料,其性能直接影响数控机床的机械加工精度.概述了刀具涂层材料的特点、要求及涂层制备技术的发展,分析了化学气相沉积法、物理气相沉积法、等离子体增强化学气相沉积法及溶胶-凝胶法等几种涂层制备方法的优缺点.结合国内外刀具涂层的研究现状及发展趋势,指出在大力发展化学气相沉积涂层和物理气相沉积涂层技术的同时,开发两者相结合的新型工艺,推动国内刀具涂层技术的快速发展.  相似文献   

3.
在金属材料上涂复硬质陶瓷的方法,一般有CVD(化学气相沉积)法和PVD(物理气相沉积)法。这两种方法各有利弊,应根据具体工件灵活加以应用。CVD法的薄膜附着性高,但处理温度高达1000℃左右,母材容易发生变形和尺寸变化,需要二次热处理。PVD法的处理温度比CVD法低,变形和尺寸变化可得到控制。但薄膜的附着性差,且绕镀性也欠佳,因此不能用于形状复杂的工件。  相似文献   

4.
《硬质合金》2019,(1):1-13
在微细钻铣刀具上进行涂层制备是有效提高微切削质量与加工效率的方法。金刚石涂层、类金刚石涂层和过渡族金属碳/氮化物涂层在微细钻铣刀具上得到了广泛应用,而应用于传统大直径刀具上的硼化物涂层、氧化物涂层等,在微细钻铣刀具上的应用仍处于开发阶段。刀具表面涂层制备技术主要有物理气相沉积技术、化学气相沉积技术和原子层沉积技术。本文从微细钻铣刀具出发,综述了各种制备方法的特点,介绍了近年来在刀具前处理、涂层晶粒直径、沉积参数控制及刀具夹具设计等关键技术点上的研究进展,对微细钻铣刀具表面涂层的制备具有指导意义。伴随着微细钻铣刀具涂层制备技术的优化更新,涂层材料和涂层结构的不断发展,使得刀具涂层的最高硬度和使用温度不断提高。  相似文献   

5.
用热丝化学气相沉积法(hot filament chemical vapor deposition,HFCVD)制备金刚石涂层刀具时,衬底温度对金刚石涂层分布的均匀性有重要影响。利用仿真软件ANSYS中的FLUENT模块,对GAMBIT中建立的三维HFCVD批量刀具反应模型进行分析,并运用耦合热传导、热对流、热辐射等3大传热方式对该模型衬底温度分布情况进行仿真预测,对影响涂层分布均匀性的刀具底部支撑台材料散热方式进行分析、优化。仿真结果显示:相较于传统的铜质支撑台和石墨支撑台,热导率小的陶瓷材料支撑台的刀体平均温差最小,为37.82 ℃,比采用铜材料为支撑台时的刀体平均温差降低了45 ℃,更有利于制备膜厚、质量均匀的CVD金刚石涂层刀具。   相似文献   

6.
CVD温度对钽沉积层性能的影响   总被引:1,自引:0,他引:1  
介绍了化学气相沉积(CVD)制备难熔金属钽涂层的原理及方法。采用冷壁式化学气相沉积法,在钼基体上沉积出难熔金属钽层。分析研究了CVD温度对沉积层的沉积速率、组织、结构和硬度等的影响。结果表明:在1000~1200℃温度范围,沉积速率随温度升高而增大;当温度超过1200℃时,沉积速率随温度的升高反而略有减小;沉积层组织呈柱状晶并随温度的升高逐渐增大;沉积层的硬度及密度随温度的升高而逐渐降低。化学气相沉积钽的最佳温度在1100℃左右。  相似文献   

7.
采用热丝化学气相沉积法在硬质合金基体表面沉积一层硼掺杂金刚石(BDD)薄膜,沉积温度为450~850℃。研究沉积温度对硬质合金基体表面硼掺杂金刚石涂层性能的影响。研究结果表明,硼掺杂明显有助于提高金刚石涂层的生长速率。当沉积温度为650℃时,BDD薄膜在硬质合金基体表面的生长速率可达到544 nm/h。这可能是由于反应气体的硼原子降低了薄膜生长的激活能(53.1 k J/mol),从而加快了沉积化学反应速度。此外,拉曼光谱和X射线衍射结果显示,高浓度硼掺杂(750和850℃)会破坏金刚石的晶格结构,从而使薄膜内缺陷增加。综上,硬质合金基体表面BDD薄膜的优选沉积温度范围为600~700℃。  相似文献   

8.
使用热丝化学气相沉积法(HFCVD)在硬质合金片以及球头铣刀表面沉积了微米金刚石薄膜(MCD),纳米金刚石薄膜(NCD)以及微米纳米复合金刚石薄膜(MNCD),通过扫描电子显微镜和拉曼光谱对其进行表征,结果呈现出典型的金刚石薄膜的性质,沉积质量高。金刚石薄膜与氧化锆陶瓷的摩擦磨损实验表明:金刚石薄膜能有效地降低对磨时的摩擦系数以及磨损率。使用三种金刚石薄膜涂层铣刀对氧化锆陶瓷进行铣削加工试验,结果显示:金刚石涂层刀具磨损率大幅度降低,刀具寿命显著增强。  相似文献   

9.
CVD法制备的Ir/Re涂层复合材料界面扩散研究   总被引:2,自引:1,他引:2  
采用化学气相沉积(CVD)技术制备了Ir/Re涂层复合材料,并在高温高真空条件下对复合材料进行扩散热处理。应用电子扫描波谱法探针研究了Ir/Re复合材料界面Re元素在Ir涂层中的扩散规律。应用半无限大扩散模型进行处理,得到了1400℃-2000℃温度范围的实验扩散系数,扩散系数与温度之间符合Arrhenius方程。根据实验结果推算,Ir/Re复合材料在2200℃时的工作寿命为47.6h。  相似文献   

10.
采用ZrCl4-CH4-H2-Ar反应体系、固态输送ZrCl4粉末低压化学气相沉积(CVD)制备ZrC涂层。研究温度对低压化学气相沉积ZrC涂层物相组成、晶体择优生长、涂层表面形貌、断面结构、涂层生长速度和沉积均匀性等方面的影响。结果表明:不同温度下沉积的涂层主要由ZrC和C相组成;随着温度的升高,ZrC晶粒(200)晶面择优生长增强,颗粒直径增大,表面致密性增加,沉积速率上升;涂层断面结构以柱状晶为主;随着离进料口距离的增加,涂层的沉积速率逐渐减小;1 500℃时,沉积系统的均匀性比1 450℃时的差。  相似文献   

11.
以六甲基二硅胺烷(HMDS)作为硅源和碳源,H2为载气,Ar为稀释气体,前驱体由载气通过鼓泡法带入反应室,通过等温化学气相渗透法(Isothermal Chemical vapor Infiltration,ICVI)在SiC纤维表面沉积SiC涂层.通过控制沉积温度来控制涂层的表面形貌、厚度.研究表明,在1100℃沉积的涂层中开始有β-SiC晶相析出,适当降低沉积温度至950℃可以防止残余碳在反应室的富集,在950℃时SiC的沉积厚度与沉积时间呈近线性关系.  相似文献   

12.
本文的目的是讨论经涂复处理后的工模具钢的真空热处理。与渗硼、氮化和渗碳等其它工艺相比,涂复处理是指不用有机化合物和不用电解法在工模具钢上形成涂复层的处理工艺,其目的是为了提高工模具的使用寿命。尽管在涂复中存在少量扩散,该工艺还是可在工模具钢的表面额外形成2~5μm的涂复层。我们谈的涂复工艺包括化学气相沉积和物理气相沉积。  相似文献   

13.
目的 探索基于原子层沉积法(Atomic Layer Deposition,ALD)的纳米涂层低温制备技术,并重点研究涂层沉积过程及纳米氧化铝涂层对刀具力学性能的影响.方法 利用原子层沉积法,在200℃的环境下制备不同涂层厚度的纳米Al2O3涂层刀具,对涂层的微观组织、厚度、硬度、断裂韧性、断口形貌、弯曲强度、结合力及摩擦系数进行检测.结果 ALD沉积技术能将纳米涂层均匀沉积在YT5刀具表面,且涂层光滑,无滴状气泡,涂层厚度可以精确控制在纳米级.ALD涂层与基体结合力的大小与涂层厚度相关,随着涂层厚度增大,结合力呈先增后降的趋势,测得50、100、200 nm等3种纳米涂层结合力大小分别为11.07、12.74、7.86 N.纳米涂层能够提高刀具的硬度,显著降低刀具表面的摩擦系数,测得刀具摩擦系数分别为0.56、0.43、0.67,最高降低摩擦系数达40%以上.此外在200℃的沉积温度下,没有产生金属相变,因而对刀具基体没有影响,刀具的断裂韧性和弯曲强度没有降低.结论 基于ALD的纳米涂层低温沉积技术所制备的纳米涂层刀具,具有良好的力学性能及涂层-基体界面结合力,能显著提高刀具性能,改善切削加工条件.  相似文献   

14.
以WF6和H2为原料,采用化学气相沉积法在纯铜基体上沉积出难熔金属钨涂层。分析研究了不同沉积温度(500℃,600℃,700℃)沉积层显微组织、表面形貌、表面粗糙度及相关机制。试验分析表明:随沉积温度升高,沉积速率加快,涂层组织柱状晶生长取向趋于杂乱;沉积层表面形貌发生明显改变,表面粗糙度显著增加。杂质颗粒对沉积组织有显著的影响,造成沉积表面粗糙度显著增加。  相似文献   

15.
运用化学气相沉积法在碳纤维表面获得C—Si梯度功能涂层的基础上,比较了C—Si梯度涂层与单Si涂层对碳纤维强度影响的差异。实验结果表明:由于C—Si梯度功能涂层减少了涂层与纤维间的各种不匹配因素,使其纤维束强度明显高于单Si涂层碳纤维。同时,适度空气氧化可使C—Si梯度功能涂层碳纤维与单Si涂层碳纤维强度均得到提高;当氧化时间相同,氧化温度为600℃时,上述涂层碳纤维的强度均高于氧化温度为650℃时的强度。另外,当涂层碳纤维在600℃与650℃氧化,C—Si梯度功能涂层碳纤维强度均大于单Si涂层碳纤维。  相似文献   

16.
高钴硬质合金基底上化学气相沉积金刚石膜的研究   总被引:1,自引:0,他引:1  
通过采用二步浸蚀法对硬质合金(WC-Co12%)刀具进行预处理,应用微波等离子化学气相沉积装置,在经二步浸蚀法预处理过的硬质合金上沉积出高质量和结合力强的金刚石涂层。研究了提高涂层附着力的基体预处理方法,用SEM、XRD、激光Raman光谱分析了涂层质量,用切削试验检测金刚石涂层与刀具基底的附着情况,结果表明二步浸蚀基体预处理方法能有效地降低基体表面金属钴的含量,消除沉积过程中Co的负面影响,从而提高金刚石涂层的附着力,使刀具使用寿命明显提高。  相似文献   

17.
CVD温度对钨沉积层组织性能的影响   总被引:2,自引:2,他引:2  
以WF6和H2为反应气体,采用化学气相沉积法在纯铜基体上沉积出难熔金属钨涂层.分析研究了沉积温度对沉积层组织、结构、表面形貌及涂层致密度、硬度、耐磨性能的影响.试验结果表明:随着温度升高,沉积速率加快,涂层组织逐渐由柱状晶转变为树枝晶,表面粗糙度显著增加,膜层致密度、硬度下降,耐磨性降低.化学气相沉积钨的最佳工艺温度范围为550~650℃.  相似文献   

18.
不同沉积温度下CrCN涂层的力学性能   总被引:1,自引:0,他引:1       下载免费PDF全文
使用磁控溅射技术在304不锈钢表面制备CrCN涂层,研究了沉积温度(200、250、300、350和400 ℃)对涂层结构及力学性能的影响。研究表明,沉积温度为250 ℃时,涂层的晶粒尺寸及表面粗糙度最大,但随着沉积温度的进一步升高,涂层的晶粒逐渐细化,表面粗糙度明显下降;同时涂层硬度伴随沉积温度的升高出现先增大后减少的趋势,沉积温度为350 ℃时,薄膜具有最高的硬度(22.85 GPa),抗弹性形变和抗塑性形变能力最好,体现出优异的力学性能。  相似文献   

19.
采用化学气相沉积(CVD)法在镍基高温合金K444表面制备了渗铝涂层。850、950和1050℃制备的涂层均为双层结构,外层是NiAl相,内层为互扩散区。涂层随沉积温度升高而增厚,3个沉积温度制备的CVD渗铝涂层厚度分别约为6.2、12.5和30.3μm。研究了K444合金及3个温度制备的CVD渗铝涂层在750℃NaCl+Air条件下的腐蚀行为。结果表明,K444合金表面发生氧化和氯化反应,腐蚀严重。而CVD渗铝涂层表面生成了保护性Al2O3,抗NaCl腐蚀能力增强,1050℃沉积温度下制备的CVD渗铝涂层抗腐蚀能力最强。  相似文献   

20.
化学气相沉积法制备Cr_2O_3涂层及其性能研究   总被引:1,自引:0,他引:1  
采用化学气相沉积法在铝合金表面制备Cr2O3陶瓷涂层,通过SEM、XRD、电化学极化曲线对涂层的形貌、成分、耐腐蚀性能进行了研究。结果表明,Cr O3在260℃时转化成了中间产物Cr8O21,以气态化合物的形式沉积于铝合金表面。经520℃热处理后可制得Cr2O3涂层。化学气相沉积法有效地提高了铝合金的硬度和耐腐蚀性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号