首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An original MRI contrast agent, called P792, is described. P792 is a gadolinium macrocyclic compound based on a Gd-DOTA structure substituted by hydrophilic arms. The chemical structure of P792 has been optimized in order to provide (1) a high r1 relaxivity in the clinical field for MRI: 29 mM−1 x s−1 at 60 MHz. (2) a high biocompatibility profile and (3) a high molecular volume: the apparent hydrodynamic volume of P792 is 125 times greater than that of Gd-DOTA. As a result of this high molecular volume, P792 presents an unusual pharmacokinetic profile, as it is a Rapid Clearance Blood Pool Agent (RCBPA) characterized by limited diffusion across the normal endothelium. The original pharmacokinetic properties of this RCBPA are expected to be well suited to MR coronary angiography, angiography, perfusion imaging (stress and rest), and permeability imaging (detection of ischemia and tumor grading). Further experimental imaging studies are ongoing to define the clinical value of this compound.  相似文献   

2.
Rationale and objectives: To develop and partially characterize a new class of potential blood pool magnetic resonance (MR) contrast agents.Methods: Various copolymeric chelates of gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) were prepared with differing molecular weights of polyethylene glycol (PEG) or polypropylene glycol (PPG) as linkers between the monomeric chelate units. Gadolinium content of the polymeric chelates was determined by atomic absorption spectra. Relaxivity of the polymeric chelates was measured at 1.5 Tesla and compared with Gadolinium-DTPA. MR angiography (MRA) was performed in rabbits comparing Gd-DTPA with Gd-copolymers.Results: The gadolinium content of the copolymeric chelates ranged from 2.95 to 22.2% on weight basis. The molecular weight of the PEG linkers in the copolymers ranged from about 150 to about 3400. Ther 1 (1/T1, mM−1 s−1) for Gd-DTPA=4.1. Ther 1 values for the different Gd-containing polymers ranged from 3.8 to 5.8, with the lowestr 1 for the polymer prepared with the lowest-molecular-weight complex. The higher-molecular-weight complexes resulted in moderately higher relaxivity. MRA with Gd-copolymers, in rabbits, showed markedly greater vascular enhancement relative to an equivalent dose of Gd-DTPA. Vascular enhancement was much more sustained with the copolymeric agent and confined to vascular space; i.e. no appreciable background tissue enhancement—a reflection of distribution into extravascular fluid space—was observed.Conclusions: Relative to Gd-DTPA monomers, PEG-containing Gd-DTPA polymeric complexes provided moderate increases in relaxivity but markedly greater efficacy during in vivo MRA. In vitro relaxivity studies of Gd-copolymers showed only an approximately 50% increase inr 1 relaxivity compared with Gd-DTPA. The PEG-containing complex's lack of rigidity may have diminished the effect of spin diffusion on relaxation, thereby accounting for this modest increase. The greater efficacy of Gd-copolymers during in vivo MRA may reflect compartmentalization within the vascular space and possibly enhanced relaxation of the macromolecular copolymers in the blood. Gd-copolymers are promising agents that merit additional study.  相似文献   

3.

Objective

This study aims to explore the relationship between plaque surface morphology and neovascularization using a high temporal and spatial resolution 4D contrast-enhanced MRI/MRA sequence.

Materials and methods

Twenty one patients with either recent symptoms or a carotid artery stenosis ≥40% were recruited in this study. Plaque surface morphology and luminal stenosis were determined from the arterial phase MRA images. Carotid neovascularization was evaluated by a previously validated pharmacokinetic (PK) modeling approach. K trans (transfer constant) and v p (partial plasma volume) were calculated in both the adventitia and plaque.

Results

Image acquisition and analysis was successfully performed in 28 arteries. Mean luminal stenosis was 44% (range 11–82%). Both adventitial and plaque K trans in ulcerated/irregular plaques were significantly higher than smooth plaques (0.079 ± 0.018 vs. 0.064 ± 0.011 min?1, p = 0.02; 0.065 ± 0.013 vs. 0.055 ± 0.010 min?1, p = 0.03, respectively). Positive correlations between adventitial K trans and v p against stenosis were observed (r = 0.44, p = 0.02; r = 0.55, p = 0.01, respectively).

Conclusion

This study demonstrates the feasibility of using a single sequence to acquire both high resolution 4D CE-MRA and DCE-MRI to evaluate both plaque surface morphology and function. The results demonstrate significant relationships between lumen surface morphology and neovascularization.
  相似文献   

4.
Object: A method is proposed that provides spectroscopic images with high spatial resolution and moderate spectral resolution at very short total data acquisition times. Materials and methods: Balanced steady-state free precession (bSSFP, TrueFISP, FIESTA, b-FFE) is combined with a multiecho readout gradient and frequency-sensitive reconstruction such as Fourier reconstruction known from echo-planar spectroscopic imaging (EPSI) or matrix inversion. Balanced SSFP imaging requires short repetition times to minimize banding artefacts, thereby restricting the achievable frequency resolution. Results: Two-dimensional (2D) high-resolution spectroscopic images were produced of three 1H resonances (water, acetone and fat) on phantoms and water/fat separation in vivo within 1–2 s. Additionally, fast 31P spectroscopic images were acquired from a phantom consisting of two resonances within 195 ms. Conclusion: Frequency-sensitive reconstruction of multiecho bSSFP data can provide spectroscopic images with high spatial and temporal resolution while the frequency resolution is moderate at around 100 Hz. The method can also separate more than three resonances, allowing for hetero-nuclei metabolite mapping, for example 13C and 31P.  相似文献   

5.
Ultrathin HfO2 gate dielectrics have been deposited on strained Si0.69Ge0.3C0.01 layers by rf magnetron sputtering. The polycrystalline HfO2 film with a physical thickness of ∼6.5 nm and an amorphous interfacial layer with a physical thickness of ∼2.5 nm have been observed by high resolution transmission electron microscopy (HRTEM). The electrical properties have been studied using metal-oxide-semiconductor (MOS) structures. The fabricated MOS capacitors on Si0.69 Ge0.3C0.01 show an equivalent oxide thickness (EOT) of 2.9 nm, with a low leakage current density of ∼4.5 × 10 − 7 A/cm2 at a gate voltage of –1.0 V. The fixed oxide charge and interface state densities are calculated to be 1.9 × 1012 cm− 2 and 3.3 × 10 11 cm− 2eV−1, respectively. The temperature dependent gate leakage characteristics has been studied to establish the current transport mechanism in high-k HfO2 gate dielectric to be Poole–Frenkel one. An improvement in electrical properties of HfO2 gate dielectrics has been observed after post deposition annealing in O2 and N2 environments.  相似文献   

6.
The preparation and oxygen permeation properties of the (Ce0.8Pr0.2)O2−δ − x vol% MnFe2O4 composites, where x = 0 to 35, have been investigated. The samples were prepared by the Pechini method. In the case of Ce0.8Pr0.2O2−δ, an oxygen flux density of 6 μmol⋅cm−2⋅s−1 (L = 0.0247 cm) and the maximum methane conversion of 50% were attained at 1000C. Unlike composites consisting of Gd-doped CeO2 and MnFe2O4, the oxygen permeability of the (Ce0.8Pr0.2)O2−δ – x vol% MnFe2O4 composites was almost constant regardless of the volume fraction of MnFe2O4; however, the optimum volume fraction of MnFe2O4 was determined to be 5 to 25 in the context of the chemical and mechanical stabilities under methane conversion atmosphere. In addition, the surface modification of the (Ce0.8Gd0.2)O2−δ – 15 vol% MnFe2O4 composite was performed by using the FePt nanoparticles. The catalyst loading of 2.8 mg/cm2 on the both side of the 0.3 mm-thick (Ce0.8Gd0.2)O2−δ – 15vol% MnFe2O4 composite increased the oxygen flux density from 0.30 to 0.76 μmol⋅cm−2⋅s−1 in the case of He/air gradients; however, the effect seems to be reduced in the case of high oxygen flux density caused by a large pO2 gradient. Moreover, the Langmuir-Blodgett film of the FePt nanoparticles were successfully prepared on the tape-cast (Ce0.8Gd0.2)O2−δ – 15vol% MnFe2O4 composite. Hydrophobic treatments for the surface of the composite were crucial to achieve high transfer ratio for the deposition of the LB film.  相似文献   

7.
Single crystals of Bi and Cu-doped Ca3Co2O6were synthesized in a molten K2CO3flux. Using an obtained single crystal of (Ca0.985(5)Bi0.015(5))3(Co0.990(3)Cu0.010(3))2O6elongated to the c-axis direction of the crystal structure, the electric resistivity (ρ) and Seebeck coefficient (S) were measured from room temperature to over 1000 K in air. The single crystal showed p-type semiconducting behavior with ρ values of 1.8 Ω cm at 303 K and 0.017 Ω cm at 1000 K. The S values were +254 μ VK− 1 at 325 K, +360 μ VK− 1 at 420 K, and +214 μ VK− 1 at 1000 K. The power factor (S 2 ρ − 1) increased with an increase of temperature and attained 2.70 × 10− 4 Wm− 1K− 2 at 1000 K.  相似文献   

8.
Lithium phosphorous oxynitride(Lipon) thin films as a lithium ion conductive electrolyte were prepared by radio frequency reactive sputtering in N2 plasma. The properties of the amorphous Lipon solid electrolyte were investigated as a function of N2 pressure during reactive sputtering. The ionic conductivity and the electrochemical stability of Lipon thin films improved drastically as the N2 pressure decreased. The ionic conductivity closed to 10−6 S cm−1 and obtained a stability window of 1.0–5.0 V with an N2 pressure of 5 mTorr, where the number of nitrogen bonds between the phosphate groups were more than those formed at higher pressure. It was possible to fabricate the Li//LiCoO2 complete thin film battery using this Lipon solid electrolyte, which exhibited excellent discharge characteristics close to the theoretical capacity (ca. 69 uAhcm−2−um−1) and showed a considerably high rate capability.  相似文献   

9.
In the current study the effect of increasing concentrations of superparamagnetic iron oxide labeled cells on the MRI signal decay at magnetic field strengths of 0.2, 1.5, and 3 T was evaluated. The spin echo and gradient echo cellular transverse relaxivity was systematically studied for various concentrations (N = 1, 5, 10, 20, 40, and 80 cells/μlgel) of homogeneously suspended SH U 555A labeled SK-Mel28 human melanoma cells. For all field strengths investigated a linear relationship between cellular transverse relaxation enhancement and cell concentration was found. In the spin echo case, the cellular relaxivities [i.e., d(ΔR 2)/dN] were determined to 0.12 s−1 (cell/μl)−1 at 0.2 T, 0.16 s−1 (cell/μl)−1 at 1.5 T, and 0.17 s−1 (cell/μl) at 3 T. In the gradient echo case, the calculated cellular relaxivities (i.e., d(ΔR 2 * )/dN) were 0.51 s−1 (cell/μl)−1 at 0.2 T, 0.69 s−1 (cell/μl)−1 at 1.5 T, and 0.71 s−1 (cell/μl)−1 at 3 T. The proposed preparation technique has proven to be a simple and reliable approach to quantify effects of magnetically labeled cells in vitro. On the basis of this quantification well suited tissue specific models can be derived.  相似文献   

10.
Recently, the feasibility of the praseodymium complex of 10-(2-methoxyethyl)-1,4,7,10-tetraaza-cyclododecane-1,4,7-triacetate (Pr[MOE-DO3A]) for non-invasive temperature measurement via1H spectroscopy has been demonstrated. Particularly the suitability of the complex for non-invasive temperature measurements including in vivo spectroscopy without spatial resolution as well as first spectroscopic imaging measurements at low temporal resolution (≥4 min) and high temporal resolution (breath hold, ∼20 s) has been shown. As of today, calibration curves according to the particular experimental conditions are necessary. This work aims to clarify whether the Pr[MOE-DO3A] probe in conjunction with1H-NMR spectroscopy allows non-invasive absolute temperature measurements with high accuracy. The measurement results from two different representative media, distilled water and human plasma, show a slight but significant dependence of the calibration curves on the surrounding medium. Calibration curves in water and plasma were derived for the temperature dependence of the chemical shift difference (F) between Pr[MOE-DO3A]'s OCH3 and water withF=−(27.53±0.04)+(0.125±0.001)* T andF=−(27.61±0.02)+(0.129±0.001)* T. respectivel, withF in ppm andT in °C. However, the differences are minuscule even for the highest spectral resolution of 0.001 ppm/pt, so that they are indistinguishable under practical conditions. The estimated temperature errors are ±0.18°C for water and ±0.14°C for plasma and with that only slightly worse than the measurement accuracy of the fiber-optical temperature probe (±0.1°C). It can be concluded that the results obtained indicate the feasibility of the1H spectroscopy method in conjunction with the Pr[MOE-DO3A] probe for absolute temperature measurements, with a maximum accuracy of ±0.2°C.  相似文献   

11.
An exceptionally high Al3+ ion conducting polycrystalline solid based on the NASICON type structure was successfully realized within the system (AlxZr1−x)4/(4−x)Nb(PO4)3. The partial substitution of the smaller higher valent Nb5+ ion for Zr4+ helped stabilize and accommodate the mobile Al3+ ion into the NASICON like structure. The addition of boron oxide to the Al3+ ion conducting solid electrolyte, as a sintering additive, aided in the achievement of satisfactory mechanical strength and density for practical use. Environmental gas sensors were fabricated by combining the (AlxZr1−x)4/(4−x)Nb(PO4)3 solid electrolyte with yttria stabilized zirconia (YSZ) and appropriate auxiliary electrodes. The Nernst-like electrochemical sensors demonstrated rapid and reproducible response to CO2 and NOx, thereby promising excellent potential for environmental monitoring applications.  相似文献   

12.
Three novel Ba5LnNiTa9O30 (Ln = La, Nd and Sm) ceramics were prepared and characterized in the BaO-Ln2O3-NiO-Ta2O5 system. All three compounds adopted the filled tetragonal tungsten bronze (TB) structure at room temperature. The present ceramics exhibited relaxor behavior, and the Curie temperature (at 10kHz) were −130, −80 and −45°C for Ba5LaNiTa9O30, Ba5NdNiTa9O30, and Ba5SmNiTa9O30 respectively. At room temperature, Ba5LnNiTa9O30 ceramics have a high dielectric constants in the range 102∼118, a low dielectric loss in range 0.0019∼0.0036, and the temperature coefficients of the dielectric constant (τɛ) in the range −320∼−460 ppm°C−1 (at 1 MHz).  相似文献   

13.
Sr0.7La0.3TiO3−α specimens were prepared in reducing atmosphere, and the structural and electrical properties were studied. The lattice parameter of Sr0.7La0.3TiO3−α at room temperature was larger than that expected from Vegard’s law between SrTiO3 and LaTiO3 due to the reductive expansion. The conductivity of this specimen was 100 S cm−1 at 1000°C, pO2 = 10−13 Pa. However, the conductivity was not preserved after an oxidation-reduction cycle. Over pO2 = 102 Pa, the conductivity drastically dropped with increasing pO2. The thermal expansion coefficient of Sr0.7La0.3TiO3−α was 11.8 × 10−6 K−1 in 9% H2/N2 (room temperature – 1000°C). In this Sr0.7La0.3TiO3−α, the chemical expansion on oxidation reached Δl/lo = 0.51%, when changing pO2 from 10−11 Pa to 2 × 104 Pa (air) at 1000°C.  相似文献   

14.
The electrical conductivity of BaPr1−x GdxO3−δ has been characterized by means of the four-point van der Pauw technique at 200–1100 °C as a function of pO2 and pH2O. The contributions from ionic charge carriers were investigated by the EMF of concentration cells and the H+/D+ isotope effect on the total conductivity. BaPr1−x Gd x O3−δ is predominately a p-type electronic conductor under oxidizing conditions, while ionic conduction is barely measurable. Gd(III) substituted for Pr(IV) is charge compensated mainly by electron holes, with protons and oxygen vacancies contributing significantly but as minority defects only at low temperatures (wet conditions) and at high temperatures, respectively. The conductivity behaviour has been modelled under these assumptions to extract thermodynamic parameters for the defect reactions at play. The practical use of this material is limited by its poor chemical stability.  相似文献   

15.
A-site deficient lanthanum titanate (La2/3TiO3) materials with perovskite structure are attractive due to their electrical applications such as ion conductors and dielectrics. However, its stability at room temperature in air is obtained only if Na or Li etc. is incorporated into La site or Al into Ti site. In this study, the electrical conductivities of La0.683(Ti0.95Al0.05)O3 have been measured in oxygen partial pressure (Po2) between 1 and 10−18 atm at 1000~1400°C. The electrical conductivity exhibited −1/4, −1/6 and −1/5 dependence (log σ ∝ log , n = −1/4, −1/6, −1/5) depending upon temperature and Po2. The defect model explaining the observation was proposed and discussed. The chemical diffusion coefficient was estimated from the electrical conductivity relaxation.  相似文献   

16.
Praseodymium-Cerium Oxide (PrxCe1-xO2−δ; PCO), a potential three way catalyst oxygen storage material and solid oxide fuel cell (SOFC) cathode, exhibits surprisingly high levels of oxygen nonstoichiometry, even under oxidizing (e.g. air) conditions, resulting in mixed ionic electronic conductivity (MIEC). In this study we examine the redox kinetics of dense PCO thin films using impedance spectroscopy, for x = 0.01, 0.10 and 0.20, over the temperature range of 550 to 670°C, and the oxygen partial pressure range of 10−4 to 1 atm O2. The electrode impedance was observed to be independent of electrode thickness and inversely proportional to electrode area, pointing to surface exchange rather than bulk diffusion limited kinetics. The large electrode capacitance (10−2F) was found to be consistent with an expected large electrochemically induced change in stoichiometry for x = 0.1 and x = 0.2 PCO. The PCO films showed surprisingly rapid oxygen exchange kinetics, comparable to other high performance SOFC cathode materials, from which values for the surface exchange coefficient, k q , were calculated. This study confirms the suitability of PCO as a model MIEC cathode material compatible with both zirconia and ceria based solid oxide electrolytes.  相似文献   

17.
For the in vivo relaxivity of Gd-DTPA at 6.3 T in rat muscle a value of 2.7±0.5 (mM s)−1 was found, and for the in vitro value in water 3.00±0.56 (mM s)−1 at 37°C. The temperature dependence of the in vitro relaxivity was −0.087 (mM s °C)−1. The relation between1/T 1 and the tissue Gd-DTPA concentration is linear for the normally used in vivo Gd-DTPA concentration range  相似文献   

18.
Diffusion-weighted imaging of the spine using radialk-space trajectories   总被引:2,自引:0,他引:2  
Introduction Diffusion-weighted MR imaging (DWI) of the spine requires robust imaging methods, that are insensitive to susceptibility effects caused by the transition from bone to soft tissue and motion artifacts due to breathing, swallowing, and cardiac motion. The purpose of this study was to develop a robust imaging method suitable for DWI of the spine. Methods and subjects A radialk-space spin echo sequence has been implemented, which is sell-navigating because each acquisition line passes through the origin ofk-space. Influence of cardiac motion and associated flow of cerebrospinal fluid is minimized by cardiac gating with a finger photoplethysmograph. The sequence has been tested on a 1.5T system. Diffusion-weighted images of six normal volunteers were acquired in the sagittal plane with 4b values between 50 and 500 s mm−2. Because of the symmetries of the cord, diffusion measurements in the head-foot (HF) or left-right (LR) directions were sufficient to measure the dominant effects of anisotropy. Results The apparent diffusion coefficients (ADCs) measured, respectively, in the LR and HF directions were (0.699 ± 0.050) × 10−3 and (1.805 ± 0.086) × 10−3 mm2 s−1 in the spinal cord. (1.588 ± 0.082) × 10−3 and (1.528 ± 0.052) × 10−3 mm2 s−1 in the intervertebral disks, and (0.346 ± 0.047) × 10−3 and (0.306 ± 0.035) × 10−3 mm2 s−1 in the vertebrae of the cervicothoraeic spine. Conclusion Diffusion-weighted spin echo sequences with radial trajectories ink-space provide a means of achieving robust, high quality diffusion-weighted imaging and measuring ADCs in the spine. The application of the diffusion-weighting gradients in different directions allows diffusion anisotropy to be measured.  相似文献   

19.
Acceptor doped-ceria is a possible electrolyte material for the IT-SOFC (intermediate temperature solid oxide fuel cell) due to its high oxygen-ion conductivity. However, its use has been limited by its mechanical weakness and the appearance of electronic conductivity in reducing condition. In this study, alumina was selected as an additive in the doped-ceria to see if it increases the oxygen-ion conductivity and mechanical strength. Effects of alumina addition in doped ceria were studied as a function of alumina content and acceptor (Gd) content. The electrical conductivity of (Ce1−x Gd x O2−δ)1−y + (Al2O3) y (x = 0–0.35, y = 0–0.10) was measured by using impedance spectroscopy. The grain conductivity of Ce0.8Gd0.2O2-δ (GDC20) with 5 mol% alumina increased ∼3 times from that of GDC20 at 300C. The grain conductivity was even ∼2 times higher than that of Ce0.9Gd0.1O2−δ (GDC10) at 300C. The electrical conductivity of GDC20 without alumina addition, measured at 500C in air, rapidly decreased after exposure to reducing condition (Po2∼10−22 atm) at 800C. However, the decrease was much slower in GDC20 with alumina addition, indicating the improved mechanical strength. Among the examined compositions, (Ce0.75Gd0.25 O2-δ)0.95 + (Al2O3)0.05 (GDC25A5) showed the highest conductivity at most temperatures.  相似文献   

20.
The oxygen permeation flux through YSZ (Yttria-Stabilized Zirconia) in reducing Po 2 is mostly controlled by the surface-exchange kinetics in spite of very high temperature [1]. In order to study the kinetics, the YSZ surface was coated with LaCrO3 on feed side, permeate side, or two sides, and the oxygen fluxes were measured under controlled Po 2 gradient generated by different CO/CO2 mixtures (permeate side: ∼3 × 10−12 atm, feed side: 2 × 10−10∼2 × 10−8 atm) at 1600C. The oxygen flux was determined by measuring the change in CO2 content of the permeate-side gas. When both feed and permeate surfaces were coated, the oxygen flux increased by ∼6 times. For either permeate- or feed-side coating, the increases were ∼4 times and ∼1.5 times, respectively. A model was proposed in order to estimate the surface-exchange coefficient ( ) of feed and permeate side with or without coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号